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Chapter 1

Introduction

Nowadays the fascinating shape of ‘the Möbius Loop’, a twisted loop named after the
astronomer and mathematician August Ferdinand Möbius, has become a universal
symbol in life. The artist John Galleher [1] described ’The Möbius Loop is symbolic
of eternal change within stillness itself. It represents the process of transforming waste
materials into useful resources, a willingness to move with the constantly changing
cycles in our life process, transforming our challenges into useful solutions. The
Möbius Loop is an expression of non-duality. It reveals the unity of all polarities,
creating a state of oneness, joining the whole and the part, the masculine and the
feminine, expansion and contraction, spirit and matter. Everything is one and nothing
can be separated from anything else. All is completely intertwined, infinitely. This
geometric form stimulates our inter-related connection with nature, awakening to the
beauty and power of life.’

Physically, the Möbius Loop is a one-sided nonorientable surface obtained by
cutting a closed band into a single strip, giving one of the two ends thus producing
a π (180◦) twist, and then reattaching the two ends. Figure 1.1 presents an artistic
sketch of the Möbius Loop, on which ants are able to walk on its whole surface
indefinitely since there is no edge in the direction of their movement.

In the field of superconductivity, the Möbius Loop also finds its place, and it
presents many fascinating effects. A ’superconducting Möbius Loop’ can be formed
when the phase of the superconducting wave function is twisted by π, which can be
realized when a high temperature superconductor is combined with a low tempera-
ture superconductor to form a ring comprising multiple Josephson junctions, e.g., as
depicted in Fig. 1.2. This is possible because it turns out that the pair wave function
in the high temperature superconductors has a dx2−y2-wave symmetry with a phase
change of π along orthogonal directions in momentum space, instead of an s-wave
symmetry with a constant phase in all directions as in conventional metallic super-
conductors. With one of the ring electrodes having a dx2−y2-wave symmetry, the
junction oriented in one direction experience an additional π-phase difference com-
pared to that oriented in the other direction, as seen in Fig. 1.2. Since there is thus
a phase shift of π inherently built in the ring, it is frequently called a π-ring. Such
structures were first proposed by Geshkenbein, Larkin, and Barone [2, 3], and later
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2 Chapter 1. Introduction

Figure 1.1: An artistic sketch of the Möbius Loop. M.C. Escher’s ”Moe-
bius Strip II” c© 2004 The M.C. Escher Company - Baarn. All rights reserved. Used
by permission. www.mcescher.com.

relating to the dx2−y2-wave symmetry in the high-Tc superconductors by Sigrist and
Rice [4].

One of the most fascinating effects presented by the π-ring is the spontaneous
formation of a half magnetic flux quantum in its ground state [5]. Until recently,
the formation of individual half-flux quanta could be shown only in very challeng-
ing experiments, relying on difficult-to-prepare, and expensive, tri- or tetracrystalline
substrates. Nevertheless, there has been a great deal of speculation about further
possible applications of the half-flux quantum effect, e.g., in the development of su-
perconducting (quantum)-electronics and in investigations on magnetic effects in spe-
cific geometries. The experimental activities towards this have been limited, to a
great extent because of the difficulties in fabricating multiple fractional flux quanta
in proximity to one another.
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p

Figure 1.2: Schematic representation of the Möbius superconducting loop.

Multiple π-rings placed controllably at arbitrary positions would enable more de-
tailed and systematic studies on the order parameter symmetry and the formation
of spontaneous flux quanta, and their effects on Josephson devices, as well as the
realization of theoretically proposed elements for superconducting (quantum) elec-
tronics [6–8]. For this, sufficient flexibility and control are required in the positioning
of the junctions, and to couple one junction to another. A suitable way to achieve this
is with a planar array of Josephson junctions realized with an all-thin-film process
using ramp-type junctions [9] between high-Tc and low-Tc superconductors [10, 11].

The first coupled Josephson Junctions has been realized when Jaklevic and co-
workers [12] placed a Formvar spacer between their two tin-oxide-tin junctions and
observed quantum interference effects between the currents flowing through those
separate junctions. It is unlikely however that they fully imagined the importance
and the widespread interest that such coupled Josephson junctions would assume
in the years to come. Arrays of Josephson junctions, coupled to each other via su-
perconducting phases or vortex interactions, constitute today a major research area
within superconductivity [13]. With available standard photolithographic techniques,
it is a relatively an easy matter to deposit superconducting islands, micrometer sized
and of well-defined shape, onto an appropriate substrate to allow the study of collec-
tive Josephson effects, the interaction of the vortex lattices, and superconductivity
in two dimensions. For basic two dimensional physics, the arrays have become tools
for experimental investigations of phase transitions, the Ising model, frustration and
disorder, to mention but a few of the more important ones. While one should re-
alize the complexity to fabricate three-dimensional (3D) arrays, and the relevance
of such 3D-arrays as model systems for bulk granular superconductors, it is fair to
say that today’s most popular arrays are planar. On the other hand, although the
phase coherence of the superconducting wave function between a high-Tc and a low-Tc

superconductor has been demonstrated [14], the properties and potential of planar
hybrid Josephson junctions combining these two superconductors have hardly been
explored.
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Modifying the ramp-junction technology [11, 15] arises the ability to controllably
prepare high-quality Josephson junction structures connecting a high-Tc and a low-Tc

superconductor, and enables the realization of planar arrays of π-rings. In this the-
sis, Josephson junction arrays have been first investigated in a zigzag configuration,
employing a high-Tc and a low-Tc superconductor. Originally, the gene of this struc-
ture was born when Hilgenkamp, Mannhart, and co-workers squeezed their brains
to understand highly anomalous magnetic field dependencies of the critical currents
observed in their high-Tc grain boundary Josephson junctions, which could not be
explained from standard Josephson models [16]. The fundamental physics relating to
the pairing symmetry in the high-Tc cuprate superconductors and to the faceting in
the grain boundaries were found to explain these anomalous patterns. A challenging
task was arisen to model the faceting in the grain boundaries in a controllable manner.
Motivated by this and allowed by the recent technology available in our group to fab-
ricate high-quality contacts between a low-Tc superconductor and a high-Tc cuprate
superconductor [10, 11], the faceting in high-Tc grain boundaries has been modeled
and studied in controllable zigzag Josephson arrays. Even more interestingly, these
arrays were shown to be viable structures to resolve controversial issues regarding the
pairing symmetry in the high-Tc cuprate superconductors.

The zigzag Josephson array is basically a linear array of π-rings, and it can be ex-
tended to various one- and two-dimensional π-ring arrays in different configurations,
enabling a study of many novel intriguing physical phenomena. This includes e.g., fun-
damental investigations on order parameter symmetry in the high-Tc cuprates [17, 18],
half magnetic-flux quantum effects [5, 19], and correlation in two dimensional Ising
models [19, 20]. Coupled Josephson junctions with dx2−y2-wave-induced π-phase-
shifts also seem to have large potential applications, e.g., to realize the theoretically
proposed elements for superconducting (quantum) electronics such as complementary
Josephson circuits [6] and qubits [7, 21]. Some promising steps for further works in
realizing these devices have been shown in [21–23].

In this thesis, the realization of Josephson junction arrays with dx2−y2 -wave-
induced π-phase-shifts utilizing high-Tc and low-Tc contact technology will be de-
scribed. Combining these two types of superconductors allows one to realize the
so-called π-ring, as briefly introduced earlier. This π-ring is the basic element of
Josephson array-structures discussed in this thesis. Combining π-loops in various
novel (quantum)-structures allows one to study many intriguing effects.

In Chapter 2, a brief introduction on superconductivity and superconducting ma-
terials and devices will be first given. In the same chapter, the dx2−y2 -wave-induced
π-phase-shifts in Josephson junctions will be discussed. This includes an introduc-
tion on the pairing symmetry in high-Tc superconductors and how π-phase shifts can
arise in Josephson structures involving dx2−y2-wave superconductors. Some structures
with dx2−y2 -wave-induced π-phase-shifts will be introduced. Chapter 3 will present
the fabrication procedures in order to realize high-quality thin-film ramp-type Joseph-
son contacts between high-Tc and low-Tc superconductors. Measurement techniques
used in the experiments will also be discussed in this chapter.

The first Josephson junction array configuration discussed in this thesis is the
zigzag structure. In this structure, the facets in the junctions experience a 0- or
π-additional phase in an alternating fashion. This basically presents a systematic
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model for faceting in the high-Tc grain boundaries. The results show that this type
of junction behaves in similar ways as the asymmetric 45◦ [001]-tilted grain boundary
junctions, and even more important simultaneously confirms that the predominant
pairing symmetry in YBa2Cu3O7−δ is dx2−y2 -wave. This will be discussed in Chap-
ter 4. Furthermore, the results of Josephson current imaging using low temperature
scanning electron microscopy on zigzag Josephson junctions will be demonstrated. In
Chapter 5, this structure was employed as a tool to phase-sensitively test the order
parameter symmetry in the electron-doped compound Nd2−xCexCuO4−y.

Under certain conditions, the π-loops are characterized by the spontaneous gener-
ation of half magnetic-flux quanta. These half flux quantum effects and their coupling
in one dimensional (1D) and in two dimensional (2D) systems will be discussed in
Chapter 6 and 7, respectively.





Chapter 2

Josephson junctions with
dx2−y2-wave-induced
π-phase-shifts

The Josephson junction is a central element in many studies on superconductiv-
ity, and in the applications of this macroscopic quantum state. In the high tem-
perature cuprate superconductors, experiments on Josephson junctions have estab-
lished the superconducting order parameter in this cuprate material having predom-
inantly dx2−y2 -wave symmetry, providing the opportunity to realize novel Josephson
quantum-structures, characterized by built-in π-phase-shifts. Such Josephson struc-
tures are of interest for basic studies and have also been proposed as new components
in superconducting (quantum)-electronics.

In this chapter, a brief introduction to the superconductivity and superconducting
materials and devices will be given first. This first section will partly follow Refs [24]
and [25]. Later, the symmetry of the order parameter in superconductors will be
discussed, followed by an introduction to how a π-phase shift is obtained in connected
Josephson arrays. Finally, the state of the art of the Josephson structures with dx2−y2 -
wave-induced π-phase-shifts will be listed.

2.1 Superconductivity

2.1.1 Phenomenological description

Superconductivity is one of the examples of macroscopic quantum systems [26], and
is the result of a weak positive correlation between two electron states of opposite
spin and momentum (Cooper pairs in BCS theory) through interaction with lattice
vibrations (phonons). Because of the anti-parallel combination of the spin and the
angular momentum of the electrons in each pair, the total angular momentum vanishes
and the Cooper pairs act as bosonic particles. At zero temperature, all Cooper pairs
are Bose-condensed into the superconducting electronic ground state.

7



8 Chapter 2. Josephson junctions

In a phenomenological description of the superconducting state, introduced by
Ginzburg and Landau, these Cooper pairs form a superfluid condensate that can be
described by a single wave function

Ψ(r) = |Ψ(r)| eiϕ(r) (2.1)

characterized by an amplitude |Ψ(r)| and a phase ϕ(r). The quantity |Ψ(r)|2 is
a measure of the local density of the Cooper pairs, ns. The phase ϕ(r) is coherent
over a macroscopic distance, resulting in observable macroscopic quantum mechanical
phenomena relating to superconductivity, such as the vanishing of the electrical resis-
tance when the superconducting material is cooled below its critical temperature Tc.
A characteristic distance, over which Ψ(r) can vary without undue energy increase,
is called the coherence length, ξ(T ), which is temperature and material dependent.

In addition to the disappearance of resistance in the current transport, another
intrinsic characteristic property of the superconducting state is the Meissner effect.
This implies that the magnetic induction B = 0 well inside the superconductor when
it is cooled below Tc (the magnetic flux is expelled from the interior of the supercon-
ductor). This is due to the current on the surface which gives rise to the magneti-
zation of M so that B ∼ M + H = 0, where H is the applied magnetic field. The
thickness of the region, measured from the surface, through which the supercurrents
flow is called the London penetration depth λ(T ). A magnetic field penetrating into
a superconductor decays exponentially over this characteristic length-scale from the
surface.

2.1.2 Flux quantization

The long-range quantum phase coherence of the pair wave function results in a flux
quantization in a superconducting loop. With this, magnetic flux Φ threading through
a superconducting ring is quantized in multiples of the flux quantum

Φ0 =
h

2e
= 2.07× 10−15 Wb (2.2)

The flux quantization as a result of a single-valuedness of the pair wave function is
easily seen and derived from the Ginzburg-Landau’s differential equations.

In the basic postulate of Ginzburg & Landau, the free energy density f can be
expanded in a series in terms of Ψ and the vector potential A of the form [24]

f = α|Ψ|2 +
β

2
|Ψ|4 +

1
2m∗

∣∣∣∣
(
~
i
∇− e∗

c
A

)
Ψ

∣∣∣∣
2

+
h2

8π
(2.3)

The parameter α is temperature dependent as α(t) = α0(t − 1), t = T/Tc, and β is
a constant. The constant m∗ and e∗ are the effective mass and charge of the Cooper
pairs, respectively. Here, e∗ = 2e, where e is the charge of an electron. The total free
energy is given by the volume integral of Eq. 2.3, F =

∫
fdV . When fields, currents,

or gradients are imposed, Ψ(r) adjusts itself to minimize the overall free energy.
Minimizing this energy F with respect to Ψ and A leads to the Ginzburg-Landau
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ds

G

Figure 2.1: Contour of integration within a superconducting loop.

equations [24]

α|Ψ|+ β|Ψ|2Ψ +
1

2m∗

(
~
i
∇− e∗

c
A

)2

Ψ = 0 (2.4)

and

J =
e∗~

2m∗i
(Ψ∗∇Ψ−Ψ∇Ψ∗)− e∗2

m∗c
Ψ∗ΨA (2.5)

Substituting the pairing wave function into Eq. 2.5 gives

J =
e∗

m∗ |Ψ|2
(
~∇ϕ− e∗

c
A

)
(2.6)

Integration of this current along a contour Γ enclosing a superconducting material as
sketched in Fig. 2.1 leads to

m∗c
e∗2|Ψ|2

∮

Γ

J · ds +
∮

Γ

A · ds =
~c
e∗

∮

Γ

∇ϕ · ds (2.7)

Applying the conditions that Ψ is a single-valued function, i.e.,
∮
Γ
∇ϕ · ds = 2nπ,

and that
∮
Γ
A · ds = Φ results in

m∗c
e∗2|Ψ|2

∮

Γ

J · ds + Φ = nΦ0 (2.8)

where Φ0 = hc/2e is the flux quantum1 and n is an integer. For thin superconductors
with dimensions comparable to ξ and λ, and with currents at the integration path Γ,
both terms on the left hand side of Eq. 2.7 need to be considered. But if the dimensions
of the superconductors are much larger than λ, and Γ is deep in the superconductor
where the magnetic field is expelled, then J = 0 and the flux threading the loop is
simply

Φ = nΦ0 (2.9)

1For simplicity, Gaussian units are used in the derivation, and this leads to Φ0 = hc/2e. In SI
units, Φ0 = h/2e (See [24] for Gaussian to SI units conversion).
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The quantity on the left hand side of Eq. 2.8 is, in equivalence to the concept
introduced first by London, called fluxoid and always quantized in integral multiples
of Φ0. In the Ginzburg-Landau theory it is based simply on the existence of a single-
valued complex superconducting wave function Ψ(r).

2.2 The high-Tc cuprate superconductors

Until now a huge number of superconducting materials have been discovered. Based
on their transition temperatures from the normal to the superconducting state Tc,
two types of superconducting materials are classified. The materials with Tc’s above
23.2 K are referred to as high-Tc superconductors. The metallic superconductors
are usually called low-Tc superconductors because of their lower Tc’s. Only a few
metallic superconductors have Tc above the boiling point of liquid helium. Niobium
is the mostly used metallic material in electronics applications because of its 9.2 K
transition temperature, and its chemical and mechanical stability.

The high-Tc superconductors are characterized by a relatively high transition tem-
perature Tc from the normal conducting to the superconducting state. For some mem-
bers of this class of materials, the Tc’s are even well above the boiling point of liquid
nitrogen which is 77 K. Most of the high-Tc superconductors are cuprate compounds.

Y

Ba

Cu

O

Cu

O

Nd/Ce

c
b

a

a) b)

Figure 2.2: Schematic layout of (a) YBa2Cu3O7−δ and (b) Nd2−xCexCuO4 unit cell.
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Figure 2.3: (Left) Phase diagram of the electron-doped Nd2−xCexCuO4 and the hole-
doped La2−xSrxCuO4; (Right) Phase diagram of the hole-doped YBa2Cu3O7−δ.

The cuprate superconductors are a class of ceramics which are built from a stacked
perovskite-like structure containing CuO2 planes, separated by layers of other atoms.
The CuO2 plane is a common structural ingredient for the cuprates, and it is strongly
believed that superconductivity relates to a process that occurs in these CuO2 planes,
with the other layers (simply) providing the carriers. In Figure 2.2, the unit cell
structures of the two cuprate compounds mainly used in this thesis are schematically
shown.

Another common property of cuprate superconductors is the presence of antiferro-
magnetic order at low temperatures in the undoped regime, i.e., when no free charge
carriers exist in the planes (see Fig. 2.3). This can be changed drastically upon both
ion and oxygen doping resulting in a superconducting phase.

A huge number of combinations can be synthesized by modifying the structure
or composition of these materials resulting in large families of cuprate compounds.
Relating to the type of charge carriers, the cuprates can be classified into two classes.
First is the hole-doped cuprate, in which the charge carriers are the holes (electron
vacancies), and second the electron-doped cuprate, in which the charge carriers are
electrons. In high-temperature superconductors, the supercurrent flows in CuO2 con-
duction layers, while the rest of the unit cell serves as a charge reservoir.

The primary role of vacancies or substituted atoms is to alter the supply of
charge carriers in the CuO2-planes. In the case of the hole-doped compunds, e.g.
YBa2Cu3O7−δ, the excess of oxygen atoms affects the charge balance in the crystal.
This is obtained by adding oxygen to YBa2Cu3O6, which enters the compound as
O2− and forms CuO chains [See Fig. 2.2 (a)].

To maintain the charge balance, electrons are removed from the copper oxide
planes, leaving behind holes that carry the supercurrent. These oxygen atoms basi-
cally act as dopants, because they increase the number of sites where electrons can
reside, and this amounts to creating hole-carriers in the crystal. In the case of the
electron-doped compounds, atoms of higher valance are substituted into the lattice in-
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Nb YBa2Cu3O7−δ Nd2−xCexCuO4−y

λ‖ 150 132
λ (nm) 39

λ⊥ 1600 -

ξ‖ 1.2 8
ξ (nm) 38

ξ⊥ 0.3 0.3

Table 2.1: The London penetration depth and coherence length of YBa2Cu3O7−δ,
Nd2−xCexCuO4−y, and Nb [27].

stead of lower-valance atoms. This increases the number of free electrons in the copper
oxide planes. For Nd2−xCexCuO4, it is obtained by replacing Nd3+ with Ce4+. The
phase diagrams of the hole- and electron-doped compounds as a function of dopant
concentrations are compared in Fig. 2.3. On the left side is the phase diagram for
electron-doped Nd2−xCexCuO4 and hole-doped La2−xSrxCuO4. For both, the num-
ber of charge carriers is influenced by the substituted atoms. The phase diagram for
hole-doped YBa2Cu3O7−δ is shown on the right side of Fig. 2.3.

The unit cell structure of YBa2Cu3O7−δ is orthorhombic and is shown schemat-
ically in Fig. 2.2 (a). A key feature of this unit cell is the presence of two layers
of CuO2 separated by a single yttrium atom. Next to this sandwich are two BaO
planes where one barium atom is surrounded by four oxygens along the edges of the
unit cell. At the ends of the unit cell is a copper oxide region known as the copper
oxide chain. YBa2Cu3O7−δ has in-plane lattice constants a = 3.83 Å and b = 3.89 Å,
and the c-lattice constant c = 11.65 Å. The missing oxygens are very important in
YBa2Cu3O7−δ, which results in electron vacancies (hole-doped). These missing oxy-
gens are originally located in the CuO chains at the ends of the unit cell. The subscript
δ in the formula indicates that a fraction of the expected oxygens are missing. The
maximized-Tc is 92 K at optimal doping (δ = 0.16); with δ = 0.60, superconductivity
goes away.

The unit cell structure of the electron-doped Nd2−xCexCuO4−y cuprate is shown
schematically in Fig. 2.2 (b). The structure of this compound is body-centered tetrag-
onal at all temperatures. It has nominally vacant apical oxygen atoms. Instead, the
out-of-plane oxygen atoms are located directly above and below the in-plane oxygens.
In the undoped Nd2−xCexCuO4−y, the room temperature in-plane lattice constant
is a = 3.94 Å, and the c-lattice constant c = 12.16 Å. The lattice constants change
very slightly with cerium doping. The superconducting phase is obtained by cerium
(Ce) doping, which results in an excess of electrons in the CuO2 planes acting as the
charge carriers. This superconducting phase is observed in a relatively narrow cerium
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doping range of 0.12 . x . 0.17, with an optimal doping around x = 0.15 and a Tc

of 22 K.
In Table 2.1, the magnetic penetration depth and the coherence length of

YBa2Cu3O7−δ and Nd2−xCexCuO4−y are listed and compared with the low-Tc su-
perconductor Niobium (Nb), which is used as the counter electrode in our Josephson
junction structures.

2.3 Josephson junctions and SQUIDs

The macroscopic long-range phase coherence of the pairing wave function is one of
the most intriguing features of the superconducting state, resulting for example in
the flux quantization such as just described. Another frequently used phenomenon in
superconducting electronics is the Josephson effect, which is obtained when the wave
function of two superconductors are allowed to weakly interact (weak link) through
a barrier (normal metal N, or insulator I, or constriction), in a structure called the
Josephson junction (Fig. 2.4). In this case, the Cooper pairs can still tunnel from
the first superconductor S1 to the second superconductor S2 through a thin barrier
without any bias voltage.

2.3.1 Josephson relations

Josephson [28] predicted that the supercurrent density J for such a junction is related
to the phase difference ∆ϕ of the two superconductors’ wave functions at the interface
as

J = Jc sin(∆ϕ) (2.10)

where the critical current density Jc is the maximum supercurrent density that the
junction can support, above which the voltage has a finite value. In general, the

a)

b)

|Y |1 |Y |2

S1 S2

|Y |
x

x

N
I

Figure 2.4: (a) A Josephson junction, and (b) the wave function of the first super-
conductor S1 (Ψ1) overlaps with the wave function of the second superconductor S2
(Ψ2) at the interface.



14 Chapter 2. Josephson junctions

sin(∆ϕ) component can be replaced by any function f(∆ϕ), but because the phase
must be single-valued, f(∆ϕ) has to be 2π periodic. In this thesis, and for most cases,
f(∆ϕ) = sin(∆ϕ) is used.

Equation 2.10 is called the dc Josephson relation. Applying a constant dc voltage
to the tunnel junction, the phase difference ∆ϕ evolves in time according to the ac
Josephson relation

d(∆ϕ)
dt

=
2π

Φ0
V (2.11)

Consequently, at a constant voltage V the supercurrent through the junction oscillates
with the characteristic frequency

d(∆ϕ)
dt

1
2πV

=
1

Φ0
= 483.6 MHz/µV (2.12)

The two Josephson equations govern the electrodynamics of the Josephson junc-
tion. In particular, the dc Josephson relation gives rise to the nonlinear current flow
across the junction barrier and the ac Josephson equation relates the electric field in
the junction to the evolution of the phase in time.

2.3.2 Josephson coupling energy

From the dc and ac Josephson relations of Eq. 2.10 and 2.11, respectively, one can
derive the coupling free energy stored in the junction by integrating the electrical
work

∫
JV dt =

∫
J(Φ0/2π)d(∆ϕ) done by a current source in changing the phase.

This leads to
F = −Jc

Φ0

2π
cos(∆ϕ) + C (2.13)

Here C is the constant of integration, and JcΦ0/2π = EJ is the Josephson coupling
energy. From Eq. 2.13, it is clear that the energy is minimal when the phases of
the two superconducting wave functions are equal, i.e., ∆ϕ = 0. The critical current
gives a measure of how strong the phases of the two superconducting electrodes are
coupled through the weak link. This depends on how thin and of what material the
barrier is, or, in the case of constriction weak links, on the cross-sectional area and
length of the neck.

2.3.3 Static phase distribution: effect of a magnetic field

The extremely high sensitivity of the Josephson current to magnetic fields is the
key to the most important applications of the Josephson effect. To ensure the critical
current density in the current phase relation is independent of the choice of the vector
potential, the gauge invariant phase difference is introduced and is defined as [24]

φ ≡ ϕ2 − ϕ1 +
2π

Φ0

∫ 2

1

A · ds (2.14)

where A is the vector potential and the integration is from the first to the second
electrode in a Josephson junction. With this, the general current-phase relation be-
comes

J = Jc sin φ (2.15)
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The gauge invariant phase difference is the key to understand the influence of a
magnetic field, which can not be treated without introducing the vector potential.
On the other hand, when no magnetic field is present, A = 0, φ and ∆ϕ can be used
interchangeably.

To derive a relation between the gauge invariant phase difference and the magnetic
field passing through a junction, consider two pairs of points Q1, Q2 and P1, P2 as in
Fig. 2.5 (a). Using Eq. 2.14 leads to

φ(P )− φ(Q) =
2π

Φ0

[∫ P2

P1

A(P ) · ds−
∫ Q2

Q1

A(Q) · ds
]

(2.16)

The magnetic flux through the rectangular contour Γ in Fig. 2.5 is

Φ =
∫

S

µ0H · dS =
∮

Γ

A · ds (2.17)

=
∫ Q1

Q2

A · ds +
∫ P1

Q1

A · ds +
∫ P2

P1

A · ds +
∫ Q2

P2

A · ds (2.18)

If the Q1 − P1 and Q2 − P2 portions of the contour are deep enough inside the
superconductor, where the current density is essentially zero, the second and fourth
term in Eq. 2.18 can be neglected. Then combining Eq. 2.16 and Eq. 2.18 leads to

φ(P )− φ(Q) =
2π

Φ0
Φ (2.19)

Simply put, the difference of the phase difference between two points along a junction
is proportional to the magnetic flux passing through the junction between the points,
including that in the penetration depths of the superconductors. In general, the
gradient of the phase difference along the junction as a function of applied fields can
be derived by considering a small section dx of the junction. This leads to

φ(P )− φ(Q)
dx

=
2π

Φ0
µ0Hzt (2.20)

or
∇φ =

2π

Φ0
tµ0H× n (2.21)

where n is a normal vector perpendicular to the junction interface and t = d+λ1 +λ2

is the (effective) magnetic thickness, with d the barrier thickness and λ the (effective)
London penetration depth of the respective superconducting electrodes. It is noted
here that for thin film electrodes, the penetration depth λ needs to be corrected due
to the finite electrode thickness [29, 30]. With this, the effective magnetic thickness t
becomes

t = d + λ1 coth
(

d1

λ1

)
+ λ2 coth

(
d2

λ2

)
(2.22)

where d1 and d2 are the thickness of the first and second superconducting electrodes,
respectively.
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F Fa ( )0

d

Figure 2.5: a) The integration contour of the vector potential A in a Josephson
junction used to derive a relation between the enclosed flux and the phase difference.
b) Fraunhofer pattern: the magnetic field dependence of the critical current for a
uniform junction.

Because the phase difference along the junction can vary by virtue of the presence
of a magnetic field passing through the junction, so can the critical currents. The
total current which flows through the junction is obtained by integrating the local
critical current density over the junction area A. With this,

I(Ha) =
∫

A

Jc(x) sin
(

2πµ0Hatx

Φ0
+ φ0

)
dA (2.23)

In general, this can be written in the form [31]

I(Ha) = Im
[
eiφ0

∫ ∞

−∞
hJc(x)eiηxdx

]
(2.24)

where η = 2πµ0tHa/Φ0, and h is the junction intersection in z direction which is
parallel to the applied magnetic field. Thus, Ic(Ha) is the magnitude of the complex
Fourier transform of the critical current density

Ic(Ha) =
∣∣∣∣
∫ ∞

−∞
hJc(x)eiηxdx

∣∣∣∣ (2.25)

It is noted here that the symbol H has been replaced by Ha to indicate an externally
applied magnetic field, and thus the symbol Φa will be used for the applied flux.

In practice, the Ic(Ha)-dependence will be more complicated by the contribution
of self magnetic field produced by the tunneling current. However, the fields from the
tunneling currents can be neglected in the case of a rectangular Josephson junction
with dimensions much smaller than a few times the characteristic length scale for the
self field effects, the Josephson penetration depth λJ . Under this condition, Eq. 2.23
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can be explicitly integrated, and this results in

Ic

(
Φa

Φ0

)
= JcA

∣∣∣∣∣∣∣∣

sin
(

π
Φa

Φ0

)

π
Φ
Φ0

∣∣∣∣∣∣∣∣
(2.26)

This expression resembles a magnetic field dependence of the critical current pat-
tern as shown in Fig. 2.5 (b), which is the hallmark of a rectangular junction with
homogeneous critical current densities, and is well-known as the Fraunhofer pattern.

The Josephson penetration depth λJ which is introduced above gives a measure of
the distance over which significant variations of the phase difference along the junction
can occur, and is defined as

λJ =

√
~

2eµ0tJc
(2.27)

Junctions with dimensions a much smaller than λJ , a ¿ λJ , are referred to as ’small
junctions’, and junctions with a À λJ as ’large junctions’.

2.3.4 SQUIDs

Since the fluxoid is quantized and the phase difference in the Josephson junction is
dependent on the magnetic field, one can build a device which is very sensitive to mag-
netic fields by integrating Josephson junctions in a superconducting loop. Such de-
vices with one built-in Josephson junction are referred to as rf SQUIDs, and with two
Josephson junction as dc SQUIDs. The latter is schematically shown in Fig. 2.6 (a).

In a SQUID, the flux in the loop can be related to the gauge invariant phase-
difference φ of the integrated Josephson junctions. Assuming that the supercurrent
density J = 0 well inside the superconductor, Eq. 2.7 becomes

∮
∇ϕ · ds =

2π

Φ0

∮
A · ds (2.28)

For the dc SQUID in Fig. 2.6 (a), by considering the phase drop across the two
junctions and that the phase around the loop must be single-valued, integration along
the contour Γ yields

∮

Γ

∇ϕ · ds− (ϕ1+ − ϕ1−)− (ϕ2− − ϕ2+) =

2π

Φ0

(∮

Γ

A · ds−
∫ 1+

1−
A · ds−

∫ 2−

2+

A · ds
) (2.29)

Using the gauge invariant phase difference defined in Eq. 2.14 and realizing that the
contour integral of the vector potential is the flux Φ in the loop leads to

φ2 − φ1 = 2nπ − 2π
Φ
Φ0

(2.30)
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Figure 2.6: (a) Sketch of a dc SQUIDs, (b) the magnetic field dependence of the critical
current pattern for a symmetric SQUID (Ic,1 = Ic,2), assuming a loop inductance
L = 0.

The 2nπ component can be excluded since it only represents the 2π periodicity. The
total circulating current through the junctions is

Itot = Ic,1 sin(φ1) + Ic,2 sin(φ2) (2.31)

or
Itot = Ic,1 sin(φ1) + Ic,2 sin(φ1 − 2πΦ

Φ0
) (2.32)

Assuming that the loop inductance L ≈ 0, and that both junctions in the dc SQUID
have the same critical current, then by maximizing Eq. 2.32, the critical current for
the SQUID can be obtained

Ic,tot(Φ) = 2Ic

∣∣∣∣cos
πΦ
Φ0

∣∣∣∣ (2.33)

This dependence of the total critical current on the magnetic field is shown in
Fig. 2.6 (b). The total critical current of the SQUID is Φ0-periodic and zero when
the flux in the loop Φ = nΦ0/2.

When the inductance of the loop is non-negligible, and there is an unbalance be-
tween currents flowing in both arms of the loop, i.e., I1 6= I2, resulting in a circulating
current Iª = 1

2 (I2 − I1), the total flux is

Φ = Φa + LIª (2.34)

where Φa is the applied magnetic flux. In terms of the currents in the junction, this
can be expressed as

Φ = Φa +
1
2
LIc(sinφ2 − sin φ1) (2.35)

assuming identical Ic’s for both junctions in the loop. Using Eq. 2.30 gives

φ2 = φ1 − 2π
Φ0

[
Φa +

1
2
LIc(sin φ2 − sin φ1)

]
(2.36)
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To obtain the relation between Ic,tot versus applied magnetic flux, these equations
must be solved numerically.

The depth of modulation of Ic,tot by the magnetic field is an important factor
in practical applications. For small thermal noise, an expression for this modulation
depth has been given in [32]

∆Ic,tot =
1

1 + βL
Ic,tot(max) (2.37)

where βL = 2πLIc/Φ0 is the screening parameter. The smaller βL the larger the
modulation depth. This parameter is a measure of the importance of self-inductance
in the loop, and an indication of the ability of the circulating current to shield the
applied magnetic field in the loop.

2.4 Josephson junctions with π-phase-shifts

2.4.1 The symmetry of the order parameter in superconduc-
tors

Various physical systems in nature experience phase transitions. The change of or-
der in these phase transitions is conveniently quantified by a parameter called order
parameter. The transition from the normal to the superconducting state is charac-
terized by an order parameter Ψ(r), the single superfluid-condensate wave-function,
described by Eq. 2.1. This single wave function leads to long range macroscopic phase
coherence that is one of the unique signatures of the superconducting state.

The excitations from the superconducting ground state involve mixtures of electron
and hole states referred to as quasiparticles. One of the most striking properties of the
quasiparticles is that they exhibit an energy gap ∆ with respect to the ground-state
energy. The energy gap inhibits the creation of excitations in the superconducting
state and dominates the low temperature electrical transport and optical properties
of superconductors. The gap is most clearly demonstrated and measured by tun-
neling measurements into superconductors that exhibit a sharp conductance increase
at voltage V = ∆/e [33, 34]. In the microscopic BCS theory, it is predicted that a
minimum excitation energy Eg = 2∆(T ) should be required to break a pair.

Later, Gor’kov [35] linked the Ginzburg-Landau theory and the BCS theory, and
showed that the order parameter Ψ(r) is proportional to the energy gap ∆(r). In mo-
mentum space, the order parameter Ψ(k) is related to the gap function ∆k through
Ψ(k) = ∆k/2Ek, where Ek is the quasiparticle excitation energy, and the gap param-
eter in state k is defined to be proportional to the pairing amplitude 〈ck↑c−k↓〉 [24].
Therefore, the use of the pair amplitude 〈ck↑c−k↓〉 ∝ ∆k ∝ Ψ(k) as the order parame-
ter captures the essence of the macroscopic phase-coherent superconducting state [26].

In BCS theory, it is assumed that the system is isotropic, so that ∆k is independent
of k. Because of its spherical form, this symmetry is referred to as s-wave, an analogy
to the atomic orbital with a spherical symmetry. In Fig. 2.7 (a), the magnitude and
phase of the s-wave order parameter symmetry as a function of angle in momentum
space (k-space) are depicted. This symmetry represents almost all low-Tc supercon-
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ductors, with the exception of a class of materials referred to as the heavy-fermion
superconductors.

On the other hand, all high-Tc cuprate superconductors are characterized by a
relatively high ratio of c- to a-axis lattice constants, c/a. In the k-space presentation,
this ratio translates into a flattened Brillouin zone possessing the basic symmetry
properties of the unit cell of a square (rectangular) lattice [26]. This was supported by
the results of band-structure calculations for various cuprates, which all show energy
bands predominantly derived from the CuO2 planes, with no significant dispersion
in the c-axis direction.2 Furthermore, investigations of c-axis charge dynamics and
transport have provided strong evidence for charge confinement in the CuO2 layers [26,
36].

The two dimensional characteristics of the energy bands, which increase with larger
c/a ratio, are also obviously seen in the anisotropy of various electrical properties, such
as the magnetic penetration depths and the superconducting coherence length [37, 38].
In general, it is now widely believed that for anisotropic materials such as the high-Tc

cuprate superconductors, superconductivity basically originates from the CuO2 layers,
and the pairing symmetry is expected to reflect the symmetry of the underlying CuO
lattices. In this thesis, therefore, the high-Tc cuprate superconductors are assumed
as two-dimensional electronic systems, not as anisotropic three-dimensional systems.
They consist of stacks of two-dimensional superconducting CuO2 layers.

Several pairing mechanism in the high-Tc cuprate superconductors have been pro-
posed, each related to a specific symmetry in the order parameter. The most promi-
nent mechanism was proposed first by Bicker, Scalapino, and White [39], based on
the exchange of anti-ferromagnetic spin fluctuations leading to dx2−y2 -wave pairing
symmetry. However, the exact pairing mechanism in high-Tc superconductors is thus
far not yet established. Although most pairing symmetry tests yielded convincing ev-
idence for a predominantly dx2−y2 -wave order parameter, none of these experiments
thus far could rule out a mixed pair state. For example the small difference between
the a- and b-direction in the YBa2Cu3O7−δ unit cell may induce an additional real
s-wave component to the dominant dx2−y2 -wave order parameter reflecting the asym-
metry in the lattice. In addition, for the electron-doped materials, there is still ongoing
discussion about possible pairing symmetries in this compound, specifically about the
possible pairing symmetry changes with temperature and doping (see Chapter 5 for
a more detailed discussion).

In the following, some possible pairing symmetries and their gap function in mo-
mentum space are described [34, 40]. In Fig. 2.7, these symmetry functions along
with their magnitude and phase are plotted as a function of angle in k-space for the
two-dimensional representation.

isotropic s-wave ; ∆k = ∆0. This is a spherical symmetry. The magnitude
and phase is constant along all directions in momentum
space, i.e., the gap potential ∆k is independent of k.
[Fig. 2.7 (a)]

2See [26] for a complete list of references.
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anisotropic s-wave ; ∆k = ∆0[cos kx − cos ky]4 + ∆1. In this case the phase is
constant as in the isotropic s-wave case, but the magni-
tude is suppressed along the 45◦ directions. The minimum
gap is ∆1.
[Fig. 2.7 (b)]

extended s-wave ; ∆k = ∆0{(1 + γ2)[cos kx− cos ky]2− γ2}. This symmetry
has a sign change of the phase for a range of angles around
the 45◦ directions.
[Fig. 2.7 (c)]

dx2−y2-wave ; ∆k = ∆0[cos kx − cos ky]. This symmetry has a π-phase
shift along orthogonal directions. The magnitude of the
gap is strongly anisotropic with nodes along the 45◦ di-
rections.
[Fig. 2.7 (d)]

dxy-wave ; ∆k = ∆0[2 sin kx sin ky]. This symmetry is similar to the
dx2−y2 case but is rotated by 45◦. The gap is strongly
anisotropic with nodes along orthogonal direction.
[Fig. 2.7 (e)]

dx2−y2+s ; ∆k = ∆0{(1 − ε)[cos kx − cos ky] + εs}. This symmetry
is a real admixture of the dx2−y2-wave and and s-wave
symmetry. The s-wave will add to the plus lobes and
subtract from the minus lobes of the dx2−y2-wave. This
result in a similar phase-dependence but with asymmetric
amplitudes as compared to the dx2−y2-wave symmetry. In
addition, the nodes are shifted from the 45◦ directions.
[Fig. 2.7 (f)]

dx2−y2+is ; ∆k = ∆0{(1− ε)[cos kx− cos ky]+ iεs}. This symmetry is
a complex admixture of the dx2−y2 -wave and s-wave sym-
metry. As a result, the dx2−y2-wave node disappears and
∆k becomes fully gapped but anisotropic. The anisotropy
is dependent on the fraction of the imaginary admixture.
The relative phase becomes a continuous function in k-
space with 0 < ∆ϕ < π. The relative phase between
the 90◦ and 0◦ direction is less than π, depending on the
amount of the imaginary s-admixture.
[Fig. 2.7 (g)]

dx2−y2+idxy ; ∆k = ∆0{(1−ε)[cos kx−cos ky]+ iε[2 sin kx sin ky]}. This
symmetry is a complex admixture of the dx2−y2 -wave
and dxy-wave symmetry. As a result also in this case
the dx2−y2 -wave node disappears and ∆k becomes fully
gapped but anisotropic, which is dependent on the fraction
of the imaginary component. The relative phase is also a
continuous function in k-space, but the relative phase be-
tween the 90◦ and 0◦ directions is always π.
[Fig. 2.7 (h)]
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Figure 2.7: Various possible pairing symmetries plotted in k-space; a) isotropic-s,
b) anisotropic-s, c) extended-s, d) dx2−y2 , e) dxy, f) dx2−y2+s, g) dx2−y2+is, and
h) dx2−y2+idxy. On the right hand side, the magnitude (dashed line) and phase
(solid line) are plotted as a function of directions in k-space.
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2.4.2 dx2−y2-wave-induced π-phase-shifts

In Josephson junction arrays involving dx2−y2 -wave superconductors, additional π-
phase shifts in the superconducting wave function can be inherently built between
the adjacent junctions. This can be realized, e.g., in Josephson junctions between a
high-Tc and a low-Tc superconductor.

Combining these two types of superconductors, which have a dx2−y2 -wave and
s-wave order parameter symmetry, respectively, gives a freedom to create Josephson
structures in which part of the junctions, or even parts within the junctions, are biased
with an additional π-phase shift. Figure 2.8 schematically shows Josephson junction
structures which are characterized by an additional π-phase difference between the
adjacent facets within the junction [Figure 2.8 (a)], and between the two Josephson
junctions in the superconducting ring [Figure 2.8 (b)]. The former and latter struc-
tures are referred to as a corner (0-π) junction and a dc π-SQUID, respectively. Since
the superconducting wave function experiences an additional phase of π when going
around a closed contour in those structures, both structures are also called π-rings.

The structures depicted in Fig. 2.8 are combinations of a high-Tc and a low-Tc

superconductor. In these structures, both interfaces are aligned along one of the
〈100〉 directions of the high-Tc cuprate. With the high-Tc cuprate being an s-wave
superconductor, the structure in Fig. 2.8 (a) presents no significant difference to the
case of a straight junction aligned along one of the junction’s directions, and the
structure in Fig. 2.8 (b) is simply a dc-SQUID described earlier in this chapter. With
the high-Tc superconductor having a dx2−y2 -wave symmetry, the facet oriented in one
direction experiences an additional π-phase difference compared to that oriented in
the other direction. Remark that the negative and positive signs in the figures are
used only to describe the π-phase change between the two lobes, and they can be
used interchangeably.

(a) (b)

high-T cupratec

f + 0

Nb

f p+y

high-T cupratec

f + 0

Nb

f p+

y

‹ ›100

‹ ›100

Figure 2.8: Sketch of Josephson junction structures involving superconductors with
dx2−y2-wave and s-wave symmetry, resulting in a relative additional π-phase shift in
(a part of) the junction facing the negative lobe of the dx2−y2-wave symmetry; (a) a
corner junction and (b) a π-SQUID.
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The gauge-invariant current-phase relation for such 0-π structures can be generally
simplified and described as

J =
{

Jc sin(φ) ; without a π-phase shift
Jc sin(φ + π) ; with a π-phase shift (2.38)

To simplify the analysis, the π-phase shift may also be treated as a ’negative’ critical
current density.

The temperature dependence of Jc, calculated from microscopic BCS theory, is
given by Ambegaokar and Baratoff [41–43]. When both superconducting electrodes
are the same material (∆1 = ∆2), Jc(T ) is given by

Jc(T ) =
π∆(T )
2eRN

tanh
(

∆(T )
2kBT

)
(2.39)

where RN is the normal state junction resistance. For a junction with two different
electrodes (∆1 6= ∆2), Jc at T = 0 is given by [43]

Jc(0) =
2

eRN

∆1∆2

∆1 + ∆2
K

( |∆1 −∆2|
∆1 + ∆2

)
(2.40)

where K is the complete elliptical integral of the first kind. These expressions are very
useful in practice. It allows a ready estimation of the expected maximum supercurrent
at T = 0.

2.4.3 The magnetic field dependencies of the critical currents

It has been discussed in Section 2.3 that the magnetic field dependence of the crit-
ical current Ic(Ha) for a straight junction with a uniform critical current density
resembles the Fraunhofer pattern described by Eq. 2.26. In general the Ic(Ha) pat-
tern reaches the highest value of the critical current Ic at zero applied field. The
Ic(Ha)-dependence becomes somewhat more complicated for 0 − π junctions. The
Ic(Ha)-dependence for this case can be obtained using Eq. 2.25 applying the addi-
tional phase of π in the critical current distribution as in Eq. 2.38. This leads to

Ic(Ha) =
∣∣∣∣
∫ 0

−a

hJc(x)eiηx +
∫ a

0

hJc(x)ei(ηx+π)

∣∣∣∣ (2.41)

where a is the facet length, and the linear coordinate x is taken along the facets
centered at the corner point. For a uniform critical current density, this results in

Ic(Ha) = Jch

∣∣∣∣∣∣∣∣

sin2

(
πΦ
Φ0

)

πΦ
2Φ0

∣∣∣∣∣∣∣∣
(2.42)

The critical current as a function of applied flux from Eq. 2.42 is plotted in
Fig. 2.9 (a) with a solid line. For comparison, the Fraunhofer diffraction pattern from
Eq. 2.26 is plotted with a dashed line in the same figure. The Ic(Ha)-dependence for
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Figure 2.9: (a) The magnetic field dependencies of the critical currents of a corner
junction with (solid line) and without (dashed line) a π-phase shift between the two
facets, (b) the magnetic field dependence of the critical current pattern for a symmet-
ric π-SQUID (solid line) and a standard dc-SQUID (dashed line), assuming a loop
inductance L = 0.

0− π junctions has zero critical current at zero applied field, in stark contrast to the
Fraunhofer diffraction pattern. The critical current reaches its highest value when
the applied magnetic flux per facet approaches 1

2Φ0. In addition, the pattern has a
modulation length of 2Φ0.

In equivalence to Eq. 2.30 for the standard dc SQUID, the fluxoid quantization
for the dc SQUID with an additional π-phase shift is described by

φ2 − φ1 = 2nπ − 2π
Φ
Φ0

+ π (2.43)

Using the same method as for the standard dc SQUID, the dependence of the total
critical current on the magnetic flux for a symmetric dc π-SQUID neglecting the
inductance of the loop is described by

Ic,tot(Φ) = 2Ic

∣∣∣∣cos
(

πΦ
Φ0

+
π

2

)∣∣∣∣ (2.44)

This Ic(Ha)-dependence is plotted in Fig. 2.9 (b) with a solid line. The pattern is
shifted by 1

2Φ0 because of the presence of an additional phase of π in the SQUID
loop. While for the standard dc SQUID the critical current has a maximum at zero
applied field, for the dc π-SQUID it has a minimum at zero applied field.

2.4.4 State of the art

The dx2−y2 -wave-induced π-phase-shifts in connected Josephson junction arrays have
been confirmed in various phase sensitive order parameter symmetry test experiments
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on several high-Tc cuprate superconductors as reviewed in [26, 34]. As discussed above,
the magnetic field dependencies of the critical currents for such Josephson arrays
strongly deviate from the straight Josephson junction. Another intriguing charac-
teristic of Josephson structures with π-phase shifts is that, under certain conditions,
they will spontaneously generate fractional magnetic flux quanta of 1

2Φ0, even when
no applied fields and currents are present. In chapter 6 and 7, this effect will be
discussed in more details. In the following, some experiments in which the π-phase
shift has been observed, and thus the dx2−y2-wave symmetry, will be described.

Corner junction and π-SQUID

Wollman et al. [44] performed a phase-sensitive experiment based on a
YBa2Cu3O7−δ/Au/Pb corner junction schematically shown in Fig. 2.8 (a). The mag-
netic field dependencies of the critical currents of this junction were observed and
compared with a single straight Josephson junction. From their measurement re-
sults, it was concluded that the pairing symmetry in YBa2Cu3O7−δ is predominantly
dx2−y2-wave, introducing a π-phase shift in a part of the corner junction which results
in a Ic(Ha)-dependence deviating from a standard Fraunhofer pattern for a straight
Josephson junction. Later independently, Miller et al. [45] used frustrated thin-film
tricrystal samples to probe the pairing symmetry in YBa2Cu3O7−δ in an experiment
analogous to the corner junction. Their results are also consistent with a predomi-
nantly dx2−y2 -wave symmetry in the YBa2Cu3O7−δ cuprate.

Experiments using a similar structure as the corner junction, ’the π-SQUID’,
schematically shown in Fig. 2.8 (b), were performed by Wollman et al. [46] utiliz-
ing twinned and detwinned YBa2Cu3O7−δ/Au/Pb junctions, by Mathai et al. [47]
utilizing twinned YBa2Cu3O7−δ/Ag/Pb junctions, by Brawner and Ott [48] on single
crystals of YBa2Cu3O7−δ, with two bulk point-contact junctions of Niobium, and by
Schulz et al. [49, 50] utilizing a low-inductance SQUID design in YBa2Cu3O7−δ thin
films epitaxially grown on tetracrystal SrTiO3 substrates. All of the results gave a
completely unambiguous evidence for a time-reversal-invariant order parameter with
a phase shift of π between the a- and b-axis direction of YBa2Cu3O7−δ, and were
strongly suggestive of dx2−y2 -wave symmetry pairing in YBa2Cu3O7−δ.

However, until recently, more complex geometries have not yet been realized owing
to the difficulties faced in preparing controllably high-quality junctions between high-
Tc and low-Tc superconductors, and to the geometrical limitations that are set by the
use of specially designed tricrystalline or tetracrystalline substrates.

Tricrystal ring

Tsuei et al. [5, 26] performed a phase-sensitive test on high-Tc cuprates utilizing grain
boundary Josephson junctions in a structure called the tricrystal ring. The tricrystal
ring was constructed to have particular orientations of the grain boundaries between
adjacent crystals as shown in Fig. 2.10 (a). The orientation of the cuprate thin
film grown on the substrate is denoted by the axes and the grid lines. The top left
segment has a 30◦ orientation relative to the lower crystal and 60◦ to the top right.
The grain boundary dividing the top crystals is oriented at an angle of 60◦ relative to
the horizontal grain boundary. The tricrystal ring is located at the tricrystal meeting
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(a) (b)

Figure 2.10: (a) Sketch of the tricrystal ring experiment (taken from [51]).
(b) Faceting in the high-Tc grain boundary Josephson junction (taken from [16]).
The dx2−y2-wave cloverleafs are added for clarity.

point, and as controls two two-junction rings and one ring with no junctions are
either at the bicrystal grain boundaries or not at grain boundary as shown in the
Fig. 2.10 (a).

It is clear that for a dx2−y2-wave order parameter symmetry the wave function in
the tricrystal ring experiences a total additional phase of π when circulating around
the loop. This introduces a spontaneous magnetization of 1

2Φ0, as was measured by
scanning SQUID microscopy. This spontaneous magnetization effect will be discussed
in more detail in Chapter 6 and 7. The control rings do not have such additional π-
phase shift and exhibit the standard integer flux quantization.

Resulting from the geometrical limitations that are set by the use of specially
designed tricrystalline or tetracrystalline substrates, more complex geometries have
not been realized yet and only individual half-flux quantum could be studied.

Faceting in the high-Tc grain boundaries junction

High-Tc SQUIDs made from asymmetry 45◦ [001]-tilt biepitaxial grain boundaries
show anomalous dependence of their critical currents on magnetic field [16, 52, 53].

Hilgenkamp et al. [54] pointed out that the magnetic field dependencies of the
critical currents of grain boundaries strongly dependent on the misorientation an-
gle. For an asymmetric 45◦ [001]-tilt grain boundary, the patterns are highly deviat-
ing from the Fraunhofer-like dependence with maximum peaks at a finite magnetic
field [16, 55], similar to the corner junction case. This characteristic behavior is caused
by the faceting (grain boundary microstructure) and the dx2−y2 -wave symmetry of
the high-Tc cuprates [Fig. 2.10 (b)]. In an asymmetric 45◦ [001]-tilt grain bound-
ary, the node of the presumed dx2−y2-wave order parameter symmetry is normal to
the average interface on one side of the boundary (see Fig. 2.10) (b). Faceting ro-
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tates the normal angle slightly. Because of a random orientation of faceting, each
facet experiences either a 0- or π-phase difference depending on its misorientation
angle. As a whole, this introduces a random array of junctions with or without ad-
ditional π-phase shift, producing alternating positive and negative critical currents
along the grain boundary. This is equivalent to having a series of π-loops, which
spontaneously generate alternating supercurrents, which in turn produce anomalous
SQUID interference patterns. This interpretation was supported by scanning SQUID
microscope measurements, which imaged the spontaneous magnetization in the grain
boundaries [56, 57].

In addition to an anomalous magnetic field dependence of the critical current
and the spontaneous generation of un-quantized magnetic flux, the unusual electronic
properties of the grain boundary junctions include also anomalous dependencies be-
tween the critical current and the gauge-invariant phase difference over the junc-
tions [58–60]. As this faceting is uncontrollable, such grain boundary junctions pro-
vide only limited possibilities for more detailed and systematic studies, e.g., on the
effects of spatial correlations in the sign changes of the critical current densities on the
electronic properties of the Josephson contacts [55]. To model the faceting in grain
boundary junctions in a controllable manner, a structure called the zigzag Josephson
junction, discussed later in Chapter 4 and schematically shown in Fig. 4.1, can be
realized by combining superconductors with dx2−y2 -wave and s-wave symmetry.

2.4.5 Terminology: 0- and π-facets

It has been discussed that a π-phase shift can be realized within a junction due to
the dx2−y2-wave pairing symmetry in high-Tc cuprate superconductors. Furthermore,
it has been suggested and shown in several experiments that a π-phase shift can also
be realized within a junction by mechanisms unrelated to the pairing symmetry, such
as spin-flip scattering by magnetic impurities [61], indirect electron tunneling [62],
junctions with ferromagnetic barrier [63, 64], non-equilibrium quasiparticle popula-
tion [65–67], or conventional junctions with a pair of tiny injectors [68].

Because the term π-junction is reserved for junctions that experience a π-phase
drop across the junction, such as those with ferromagnetic barrier, in this thesis the
0- and π-junction terms are avoided when it concerns order parameter induced phase-
shifts. Instead the terms of π- and 0-facet will be used to describe junctions with
and without π-phase shift, respectively, in multiple connected arrays. However, a
superconducting ring with an odd number of π-phase shifts, independent of whether
the π-phase shifts results from symmetry or tunneling mechanism effects, will be
referred to as π-rings, and a ring with an even number of π-phase shifts as 0-rings.





Chapter 3

Fabrication aspects and
measurement techniques

To exploit the dx2−y2 -wave pairing symmetry in the high-Tc cuprate superconduc-
tors, all Josephson junction arrays described in this thesis were fabricated based on
thin-film ramp-type Josephson contacts between the high-Tc cuprate and a low-Tc su-
perconductor. In most cases, the high-Tc cuprate YBa2Cu3O7−δ was employed as the
base electrode. For studies on the order parameter symmetry in the electron-doped
compound Nd2−xCexCuO4−y described in Chapter 5, the YBa2Cu3O7−δ base elec-
trode is replaced by Nd2−xCexCuO4−y with various Ce-doping levels. The keystone
to obtain a sufficient transparency in ramp-type Josephson junctions is the interlayer
concept. With this, a thin interlayer is incorporated to restore the surface damaged
by ion milling. A further advantage is that it allows an all in situ barrier deposition
between the two superconductors, leading to clean and well-defined interfaces.

In this chapter, the preparation of thin-film ramp-type Josephson contacts be-
tween the high-Tc cuprate and the low-Tc Niobium superconductor will be discussed.
This includes thin-film deposition processes, structuring of the arrays, and improved
ramp-type concepts. Later on in this chapter, measurement techniques used for char-
acterizing the samples will be introduced, including transport measurements, low
temperature scanning electron microscopy, and scanning SQUID microscopy.

3.1 Fabrication aspects

In the high-Tc cuprate superconductors, it is known that the coherence length is longer
and the charge density of states is larger in the planar a− b directions of the cuprate
layers. For these reasons, the ramp-type [9, 15, 69] interface configuration (Fig. 3.1) is
frequently used for Josephson contacts involving thin-film high-Tc superconductors.
Relating to the high-Tc superconductors, a further advantage of using the ramp-type
configuration is that one has a freedom to choose any junction orientations, or even
simultaneously fabricate a large number of junctions at variable directions in the a−b
plane of the cuprates on a single chip. The use of the ramp-type geometry also allows

31
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Au

Nb

SrTiO3

SrTiO3

Interlayer

high-Tc cuprate [001]

Figure 3.1: Thin-film ramp-type Josephson junction between the high-Tc cuprate and
the low-Tc Niobium superconductor.

one to tailor junction properties by varying the barrier material and its thickness.
A crucial step in the preparation of ramp-type interfaces is the structuring of

the beveled edge in the superconducting base electrode. This step unfortunately can
severely degrade the quality of the base electrode near the interface. To address this
problem, a thin interlayer is introduced [10] on top of the ion-beam structured high-
Tc base electrode. This leads to a much cleaner interface. Figure 3.1 schematically
shows the final layout of the ramp-type Josephson junctions between the high-Tc

cuprate and the low-Tc Nb superconductor that are used for the experiments described
in this thesis. The complete fabrication steps for fabricating thin-film ramp-type
Josephson contacts between the high-Tc cuprate and the low-Tc Nb superconductor
are schematically depicted in Fig. 3.2. In the following, the fabrication procedures to
realize this ramp-type Josephson junction will be discussed step by step.

Substrate preparations

For the development of a reliable deposition technology for high-quality high-Tc su-
perconductor thin films, the choice of the substrate material is of primary impor-
tance. The basic requirements are a crystallographic lattice match between the high-
Tc cuprate and the substrate, and similar thermal expansivity of the high-Tc films
and substrate. Furthermore, substrates should be suitably polished, stable, and rea-
sonably robust.

Depending on the application of the films, specific requirements are imposed on
the substrate. For experiments described in this thesis, the edge-alignment of the
substrate crystal axes is specifically required in order to facilitate a good alignment
of the junction interfaces with respect to the high-Tc crystal axes. Therefore, all
the samples were fabricated on the edge-aligned SrTiO3 [001]-oriented single crystal
substrates, with an alignment accuracy was better than 1◦.

The SrTiO3 substrate termination determines the growth and material properties
of the YBa2Cu3O7−δ thin films on the (sub)unit cell scale. To ensure a reproducibility
of the thin film growth, a single terminated surface is a prerequisite. For this, the
substrates are etched using a buffered HF solution and subsequently annealed in
flowing oxygen for 1.5 hour at 950 ◦C, resulting in the substrates with a single TiO2

terminated surface [70].
The twin behavior of YBa2Cu3O7−δ thin films grown by pulsed-laser deposition
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Figure 3.2: The complete fabrication steps for realizing thin-film ramp-type Josephson
contacts between the high-Tc cuprate and low-Tc Nb superconductors.

is strongly affected by the vicinal properties, i.e., angle and in-plane orientation, of
SrTiO3 [001] substrates [71]. The vicinal angle α is defined between the optical and
the crystallographic substrate surface, and its in-plane orientation β with respect
to the SrTiO3 〈100〉 crystal axis (see Fig. 3.3). On substrates having an 〈110〉 in-
plane orientation of the step edges, a completely preferred twin pair can be obtained
if α is increased to 0.6◦. On the other hand, on substrates having an 〈100〉 in-
plane orientation of the step edges, the degree of twinning can be controlled from the
presence of four ab-orientations to single-domain [001] YBa2Cu3O7−δ by varying the
vicinal angle from a low angle α ∼ 0.1◦ to α = 1.10◦. Around α = 1.10◦, the diffusion
length of YBa2Cu3O7−δ during the growth is expected to match the terrace length
of SrTiO3, resulting in almost completely detwinned YBa2Cu3O7−δ films.
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Figure 3.3: Schematic representation of the vicinal substrate surface. The step
edges are oriented along (a) the 〈100〉, and (b) the 〈110〉 crystallographic axis (taken
from [71]).

3.1.1 The high-Tc cuprate thin-films

After substrate preparation, the first step in the sample fabrication processes is the
growth of a bilayer of the YBa2Cu3O7−δ or Nd2−xCexCuO4−y cuprate base electrode
and the SrTiO3 insulation layer. The growth of the bilayer was performed in a home-
built vacuum chamber with a load-lock system. Additionally, this vacuum system is
also equipped with an inline chamber for an in situ etching process. A background
pressure of 1× 10−7 mbar can be generally achieved in this system. A deposition in
two types of gas environments, Oxygen (O2) or Argon (Ar), is possible in this vacuum
chamber.

The bilayer-deposition is accomplished using pulsed-laser deposition, utilizing a
pulsed Lambda Physik XrF excimer laser with 248 nm wave length. In general, the
pulsed laser deposition technique allows an accurate control of the film stoichiometry.
The [001]-oriented SrTiO3 single crystal substrates are mounted with silver paint onto
a heater. A plume of the vaporized target material is created by focusing the laser
beam at the target via a lens with a focal length of f ≈ 45 cm, and is directed at the
substrate, whose temperature and position can be controlled. Prior to the deposition,
the target is always cleaned by ablating some material from the target surface while
keeping the trajectory of the plume to the target closed. This preablation step is
performed with a 10 Hz laser pulse for 2 minutes. To achieve a homogeneous energy
distribution over the laser spot at the target, the laser beam is passed through a
mask with a window area of 98 mm2. The mask is positioned between the laser
source and focusing lens. The pressure during deposition can be controlled ranging
from 1× 10−4 to 5× 102 mbar using a variable valve and mass flow controllers. The
process parameters, such as deposition pressure and temperature, are determined by
the type of the material being grown.

YBa2Cu3O7−δ-film growth procedures

The SrTiO3 substrate is mounted on the heater using silver paint, and subsequently
heated up for outgassing before being loaded into the load-lock chamber and trans-
ferred to the deposition chamber. The background pressure is maintained at about
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4 × 10−7 mbar at 200 ◦C substrate temperature, prior to heating up the substrate
slowly to the deposition temperature Tdep of 780 ◦C. The heating up of the substrate
is performed at this background pressure of up to 600 ◦. To in situ anneal and clean
the substrate, 0.25 mbar O2 gas is introduced when the temperature reaches 600 ◦.

The deposition of the YBa2Cu3O7−δ film is performed in an O2 environment at
a deposition pressure Pdep of 0.25 mbar using a YBa2Cu3O7 target. The spot size
of the laser beam at the target is 5.7 mm2 with an energy density Es of 1.2 J/cm2.
This gives a deposition rate vdep of 1.00 Å/pulse for the YBa2Cu3O7−δ film. Films
with a typical thickness of 150 nm or 300 nm are prepared with a 4 Hz laser pulse.
During the ablation, the substrate is scanned relative to the plume to ensure a uniform
film over the entire substrate. Subsequently, the SrTiO3 insulation layer is deposited
at 740 ◦C in 0.10 mbar O2. The parameters for the SrTiO3 deposition are listed
in Table 3.1. After depositing the SrTiO3 insulation layer, the annealing process is
performed in two steps at 600 ◦C for 15 minutes and at 450 ◦C for 30 minutes in an O2

environment, by venting the system. Finally the sample is slowly cooled down to room
temperature and taken out from the chamber. The complete annealing procedure for
the YBa2Cu3O7−δ films is given in the left panel of Fig. 3.4. This procedure yields a
typical critical temperature Tc of 89 K for the YBa2Cu3O7−δ films.

Nd2−xCexCuO4-film growth procedures

The procedures for the Nd2−xCexCuO4−y depositions are similar to the
YBa2Cu3O7−δ films, but they differ strongly in the deposition temperatures and
annealing procedures. For the optimally doped films, a Nd1.85Ce0.15CuO4 tar-
get, and for the overdoped cases a Nd1.835Ce0.165CuO4 target is used. The
Nd2−xCexCuO4−y-film depositions are performed at 820 ◦C in 0.25 mbar O2. The
spot size of the laser beam at the target is also 5.7 mm2 and the energy density
Es = 2.5 J/cm2. This gives a deposition rate vdep of 0.83 Å/pulse. Films with a
typical thickness of 150 nm or 300 nm are prepared with a 4 Hz laser pulse. Sub-
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Figure 3.4: Annealing procedures for the (left) YBa2Cu3O7−δ and (right)
Nd2−xCexCuO4−y thin-film depositions.
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Tdep Pdep Espot Aspot vdep

Material
(◦C) (mbar) (J/cm2) mm2 (Å/pulse)

YBa2Cu3O7−δ 780 0.25 O2 1.2 5.7 1.00

Nd2−xCexCuO4−y 820 0.25 O2 1.2 5.7 0.83

SrTiO3 740 0.10 O2 1.2 5.7 0.64

Au 100 0.22 Ar 4.0 3.5 0.20

Table 3.1: Parameters used for thin film depositions using pulsed laser ablation.

sequently, the SrTiO3 insulation layer is deposited at 740 ◦C in 0.10 mbar O2 in a
similar way to the bilayer YBa2Cu3O7−δ-SrTiO3 case. After depositing the insu-
lation layer, the deposition chamber is evacuated to about 1 × 10−6 mbar and the
sample is kept at 740 ◦C for 10–15 minutes, before it is slowly cooled down to room
temperature under vacuum conditions. The complete annealing procedure for the
Nd2−xCexCuO4−y films is given in the right panel of Fig. 3.4. For the optimally
doped Nd1.85Ce0.15CuO4 films, this procedure yields a typical critical temperature
Tc of 20 K, the overdoped Nd1.835Ce0.165CuO4 films have Tc’s of 13 K. The Tc’s for
Nd1.85Ce0.15CuO4 and Nd1.835Ce0.165CuO4 are optimized with respect to the oxygen
content in the films.

3.1.2 Interfacing the high-Tc and the low-Tc superconductors

After the preparation of the cuprate bottom electrode and the insulating layer, the
definition of the bottom electrode and the preparation of the ramp are performed.
These are done by applying a photoresist mask and subsequently removing the un-
covered parts by Argon-ion milling.

Photolithography

First a positive photoresist-stencil of Shipley 1813 is dropped uniformly all over the
sample, which is placed on a spinner. The sample is directly spun at 4000 or 5000
rotations per minute for 30 sec to uniformly spread and harden the photoresist, and
it is subsequently baked at 100 ◦C for 10 min. Generally, the photoresist at the edges
of the sample will be thicker than that in the middle due to the spinning. The resist
is therefore exposed to UV-light with an energy density of 10 mW/cm2 for 45 sec,
through a square positive mask which is designed only to remove the photoresist at
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the edges of the sample. This is done in order to allow a better contact between
the mask and the sample during the sample-layout transferring, giving a more highly
precise pattern than the one without this step. The photoresist is developed in a
water-diluted 5%-NaOH developer (5 water : 1 developer) for 25 sec, and followed
by two immersions in demiwater for 15 and 20 sec, respectively. Then the designed
sample-layout is transferred by exposing the sample to UV light for 6 − 12 sec, and
subsequently developed in a similar way as the edge-part removal process.

Argon-ion milling

The removal of uncovered film material is simultaneously performed with the ramp
interface preparation, using accelerated Argon ions (Argon-ion milling). The process
is accomplished in a vacuum system with a background pressure of 4× 10−6 mbar.

The milling process is performed at a beam voltage of 500 V and a beam current
of 100 mA in 5 × 10−3 mbar. The ramps are etched under an angle of β = 45◦

between the incoming Ar-ions and the sample surface, while rotating the sample at
18 rotations per beam-pulse. The rotation of the sample during the milling yields an
identical ramp interface for all directions. To protect the sample from heating up due
to the ion bombardment, the Ar-ion beam is pulsed with 8 sec in on-mode and 12 sec
in off- mode. This results in an etching rate of 6.25 nm/pulse for YBa2Cu3O7−δ,
3.60 nm/pulse for Nd2−xCexCuO4−y, and 4.20 nm/pulse for SrTiO3. Finally the
photoresist residue is removed by using acetone and ethanol.

The effective ramp angle α for a stationary sample during etching is roughly
estimated by [10, 72]

α = arctan
(

1
1 + x

tan β

)
(3.1)

where x is the ratio of the etching rate of the photoresist over the etching rate of the
thin film. Taking x = 2 for YBa2Cu3O7−δ [10] and x = 1 for Nd2−xCexCuO4 yield
α = 18◦ and 26◦, respectively. The difference of α relative to β can be understood
from the etching process shown schematically in Fig. 3.5. As the photoresist retracts

a

b

substrate

high-T cupratec

insulator

Figure 3.5: Argon ion-milling process for structure definition and ramp-edge prepara-
tion. β is the angle of incidence of the ion beam and α is the angle of the ramp-edge.
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because its thickness is decreased during milling, a portion of the thin film represented
by the shaded region will be gradually removed (see Fig. 3.5), leading to a smaller
ramp-angle α than the angle of incidence of the ion beam β.

Interlayer and the Au barrier

The ramp interface is one of the most important ingredients in order to have a reliable
Josephson contact. The milling process of the ramp however introduces a damaged
region close to the ramp surface [10, 11]. Eventhough a special care is taken to obtain
clean interfaces and the samples are annealed prior to the Au barrier deposition,
critical current densities have never exceeded 1 A/cm2 at 4.2 K, with normal resistance
(RnA) values of the order of 10−4 Ωcm2 [11]. This poor interface transparency is
attributed to the fact that just an annealing procedure will not recover the correct
stoichiometry at the ramp-edge surface. To overcome this problem, two steps are
introduced prior to the deposition of the Au barrier layer. Those are the soft-etch
cleaning by ion-milling and the deposition of the interlayer.

After the removal of the photoresist in the previous step, the sample is surface-
cleaned by Ar-ion milling in an inline etching chamber separated to the deposition
chamber by a controllable valve, to allow an in situ interlayer and barrier layer depo-
sition. The milling is performed in two steps; first, with a beam voltage of 500 V and
a beam current of 10 mA for 4 pulses (hard-etch), and second, with a beam voltage of
50 V and a beam current of 5 mA for 10 pulses (soft-etch). Subsequently, the sample
is transferred in situ − without breaking the vacuum − into the deposition chamber.
Then, a very thin layer of the same material as the base electrode is grown in a similar

Nb counter electrode

Au barrier

in situ interface

YBa Cu O interlayer2 3 7-d

milled interface

YBa Cu O base electrode2 3 7-d

YBa Cu O2 3 7-d SrTiO3 Au Nb

Non-superconducting Y-Ba-Cu-O

Figure 3.6: Bright-field transmission electron microscopy image of the
YBa2Cu3O7−δ/Au interface at the ramp-edge area, including an YBa2Cu3O7−δ inter-
layer of 6 nm. Crystalline YBa2Cu3O7−δ material is observed up to the Au interface,
while no clear interface (dashed line) is observed between the base electrode and the
interlayer (taken from [11]).
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way to the cuprate base electrode. In the case of YBa2Cu3O7−δ, this interlayer is
7 nm and for Nd2−xCexCuO4−y it is 12 nm. These were found to be the optimized
values with respect to the obtained critical current density of the respective samples.
This interlayer is expected to stabilize the off-stoichiometric etched surface of the base
electrode and enables in situ formation of the interfaces between the electrodes and
barrier, leading to a much cleaner interface. Figure 3.6 shows a transmission electron
microscopy image of the YBa2Cu3O7−δ/Au interface at the ramp-edge area, including
an YBa2Cu3O7−δ interlayer of 6 nm. Crystalline YBa2Cu3O7−δ material is observed
up to the Au interface, while no clear interface (dashed line) is observed between the
base electrode and the interlayer [11].

The Au barrier is grown directly in situ after interlayer deposition. The deposition
is performed by pulsed laser deposition at a substrate temperature of ∼ 100 ◦C in
0.22 mbar Ar environment. The choice of Ar instead of O2 results in a smoother sur-
face and has a wetting effect on the cuprates during the Au deposition, thus decreases
the density of pinholes especially in the case of a very thin Au barrier layer [10]. Fur-
thermore, the deposition pressure has been optimized in order to decrease the effect of
high-energy particles in the plasma that are ablated from the Au target at the cuprate
layer [10]. A common deposition problem of metals is the occurrence of droplets on
the surface. Using the above mentioned parameters, a low density of droplets was
observed with practically no significant effect on the experiments.

3.1.3 The Niobium thin-films

The definition of the Nb top electrode is performed ex situ by first applying pho-
toresist prior to the Nb deposition. Niobium is deposited in a sputter system with a
background pressure of 1× 10−7 mbar. An in situ cleaning process of the Au surface
is introduced before the Nb deposition. This is done by rf sputter removal of < 1 nm
Au, with an rf power of 50 W resulting in a voltage bias Vbias of 310 V. Subsequently,
a Nb film with a typical thickness of 160 nm is deposited by a standard dc sputtering
with a dc voltage and power of 365 V and 250 W, respectively, in a deposition pres-
sure of 7.3 × 10−3 mbar of Argon gas. Using these deposition parameters, a robust
deposition rate of 80 nm/min is obtained.

As a final step, after lifting-off the unnecessary Nb part and removing the pho-
toresist by using acetone and ethanol, the redundant, uncovered Au and interlayer
underneath are removed by ion milling for a few pulses.

3.2 Measurement techniques

In this section, three different measurement techniques used for the experiments on
the arrays are described. Transport measurements including (I−V )-characterizations
and Ic(Ha)-dependencies were performed at the Universiteit Twente. Low temper-
ature scanning electron microscopy experiments were executed at the Physikalisches
Institut, Universität Tübingen by Prof. D. Kölle and co-workers. The magnetic imag-
ing of the spontaneously-generated magnetic flux expected to thread through the
Josephson junction arrays was performed at the IBM T.J. Watson Research Center
by Dr. John Kirtley.
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3.2.1 Transport measurements

The current-voltage characteristics and the magnetic field dependencies of the critical
currents were measured in a helium cryostat at 4.2 K. The measured sample was
attached to PC-board using Ge-varnish and the superconducting leads were connected
to the electrical contacts on a PC-board by Al wire-bonds. The Ic(Ha)-dependence
was measured by applying a magnetic field perpendicular to the sample surface. A
Nb shield and RLC filters were used to reduce external noise. With this, a typical dc
background magnetic field of ∼ 0.2 µT was observed.

The measurements of the Ic(Ha)-dependencies are performed using a feedback
loop. The voltage over the sample is measured and coupled back to the current
source, keeping the voltage Vc 6 5 µV at a constant value. In case of hysteresis in the
current-voltage curve, this leads to an oscillating behavior of the current between the
critical current Ic and the return current Ir. The black areas in the Ic(Ha)-graphs
indicate this hysteresis. The Ic(Ha)-dependencies are obtained by scanning just in
one direction with the field (e.g. from negative to positive Ha), reversing the bias
current and scanning the field in the opposite direction (from positive to negative
Ha). Depending on the resolution and the applied magnetic-field range, the scanning
process will be completed approximately in 1/4 − 2 hours. The scan direction does
not influence the obtained dependence. No averaging was applied, nor scanning many
times. The magnetic field dependencies are very reproducible down to the smallest
features, so that averaging would not change the patterns significantly.

3.2.2 Low temperature scanning electron microscopy

Low temperature scanning electron microscopy experiments were executed by the
group of Prof. D. Kölle at the Physikalisches Institut, Universität Tübingen. All
measurements were performed in a liquid helium (LHe) cryostage of a Scanning Elec-
tron Microscope (SEM), as described in detail in [73, 74]. In short, the cryostage
consists of a small LHe tank placed inside the SEM and has a connection to a LHe
reservoir. The sample was mounted on top of a cold finger while its surface was
scanned by the electron beam. The back of the sample is mounted in good thermal
contact with a thermal reservoir. The LHe tank is surrounded by µ-metal shields to
provide a low-noise environment.

Figure 3.7 schematically shows the electrical network outside the SEM setup for
the LTSEM imaging experiment on YBa2Cu3O7−δ/Nb ramp-type zigzag junctions.
The network consists of a current source with two outputs for the current bias and
for the field coil. Since the voltage differences caused by the electron beam are in
the order of 10− 100 nV, the voltage outputs of the sample are 1000-fold amplified.
The electron beam perturbation is periodically modulated resulting in a periodically
modulated response signal, which is detected phase sensitively by a lock-in amplifier.
A two dimensional voltage δV (x, y) image of the sample is obtained by scanning
the sample and measuring the electron beam induced change of the sample voltage
simultaneously.
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Figure 3.7: The setup for Low Temperature Scanning Electron Microscopy (LTSEM)
imaging experiments.

3.2.3 Scanning SQUID microscopy

The scanning SQUID microscope is an extremely sensitive instrument for imaging
local magnetic fields. To measure the magnetic fields, it employs a SQUID, the
most sensitive magnetic field sensing element known. This very high sensitivity is
the inherent advantage of the scanning SQUID microscopy compared to many other
techniques for imaging magnetic fields at surfaces [75–78]. In addition, it gives an
easily calibrated absolute value for the local magnetic fields.

Basically a SQUID microscope scans a sample with a scan area of a few hundred
microns on a side to image the sample magnetic fields. To obtain optimal resolution,
the SQUID pickup loop has to be very small, well shielded, and positioned as close as
possible to the sample surface. The obtainable spatial resolution of a scanning SQUID
microscope depends among other factors on the effective SQUID area. An effective
area of only a few µm2 is desirable as it allows a spatial resolution of a few µm.
In principle, a SQUID with nanobridges as weak links provides very small junction
areas of below 0.1 µm2 [79]. But some problems still have to be solved before this
structure can be realized in the scanning SQUID microscope. Nevertheless, there are
many possible applications for the scanning SQUID microscope which do not require
sub-micron spatial resolution [76].

The magnetic imaging of spontaneously generated magnetic flux expected to
thread through the Josephson junction arrays discussed in this thesis was performed
at the IBM T.J. Watson Research Center by Dr. John Kirtley. A high-resolution scan-
ning SQUID microscope as described in detail in [75, 76] was employed. In short, the
scanning SQUID microscope employed has pickup loops integrated into the SQUID
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Figure 3.8: (a) Schematic diagram of the IBM scanning SQUID microscope. (b) Ex-
panded views of the sample area. (c) Schematic layout of the integrated magnetometer
(taken from [75]).

sensor itself. It is immersed in liquid helium in a µ-metal-shielded dewar which is
suspended from the ceiling of a screened room with elastic cords. A sketch of the
scanning SQUID microscope is shown in Fig. 3.8 (a). The sample is mounted at the
end of a long, thin-walled stainless tube. The longitudinal and transverse position
of the translation stage can be adjusted with a differential micrometer and scanned
with dc motors, respectively.

Figure 3.8 (b) shows an expanded view of the microscope at the sample area. For
scanning a mechanical lever is used. The SQUID sensor is mounted on a cantilever,
and is run in direct contact with the sample. This mechanical scanning mechanism has
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the advantages of having relatively large scan area with good linearity and repeata-
bility, and retaining a good sensitivity and spatial resolution. The spacing between
pickup loop and the sample was optimized with respect to the spatial resolution and
sensitivity. The scanning SQUID microscope has a well shielded pickup loop inte-
grated into the design of low-Tc dc SQUIDs, with the pickup loop diameter of 10 µm
or 4 µm. The sketch of the pickup loop is shown in Fig. 3.8 (c). This design pro-
vides a relatively small coupling between the SQUID and the system to be measured,
good shielding of the parts of the SQUID away from the pickup loop, and a good
spatial resolution. The noise of the SQUIDs used is typically < 2 × 10−6 Φ0/Hz1/2,
corresponding to a field noise at the pickup loop of ∼ 4× 10−11 T/Hz1/2.





Chapter 4

Arrays of YBa2Cu3O7−δ/Nb
Josephson junctions in a
zigzag configuration

In this chapter, the realization and characterization of one-dimensional zigzag-shaped
YBa2Cu3O7−δ/Au/Nb Josephson junctions are described. Measurements and anal-
yses on the magnetic field dependencies of the critical currents of these junctions
are presented. The results show convincingly that the order parameter symmetry in
the YBa2Cu3O7−δ is predominantly dx2−y2-wave, and simultaneously that the mag-
netic field dependencies of the critical currents of zigzag junctions resemble, in their
basic features, the ones observed for asymmetric 45◦ grain boundary junctions. Fur-
thermore, using low temperature scanning electron microscopy, the Josephson current
counterflow in these junctions can be directly observed. All zigzag junctions described
in this chapter are considered to be in the small facet limit, i.e., the width of the junc-
tion facets is considerably smaller than the Josephson penetration depth (a ¿ λJ ).
In Chapter 6, the opposite case in which a À λJ will be discussed.

4.1 Introduction

Controllable Josephson junctions comprising the high-Tc cuprate superconductor en-
able detailed and systematic studies on the order parameter symmetry in this class of
materials and its effects on Josephson devices. In order to realize designed complex ge-
ometries incorporating the high-Tc cuprate superconductors, sufficient flexibility and
control are required in the positioning of the junctions. A suitable way to achieve this
is, in an all-thin-film process, using ramp-type junctions as described in Chapter 3.

Based on various studies, there is now a substantial experimental evidence that
the order parameter symmetry in the hole-doped high-Tc cuprate superconductors,
such as YBa2Cu3O7−δ, is predominantly dx2−y2-wave [5, 26, 34, 44]. In Chapter 2, it
has been discussed that with this symmetry the superconducting wave function ex-
hibits a π-phase difference for orthogonal direction in k-space, and that a possibility

45
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arises to configure multiply connected Josephson junctions with a built-in π-phase
difference. Examples of Josephson junction arrays with an additional phase of π have
also been shown in Chapter 2. Those structures are mostly formed by connections be-
tween high-Tc and low-Tc superconductors, or by using grain boundary configurations
prepared by employing specially designed tricrystalline or tetracrystalline substrates.
Resulting from the geometrical limitations of such special substrates, more complex
geometries have not been realized yet in the form of grain boundary Josephson junc-
tions. On the other hand, the difficulties to fabricate high-quality Josephson contacts
between high-Tc and low-Tc superconductors have until recently limited the studies
on this hybrid Josephson junction. A method to overcome this problem has been
established [10, 11, 80, 81], as described in Chapter 3. This opens a possibility to con-
trollably create Josephson contacts along specified directions of the high-Tc cuprates,
or even to combine a large number of Josephson contacts with a complex structure
on a single chip. The first structure that has been studied is the zigzag Josephson
junction [17].

4.2 YBa2Cu3O7−δ/Au/Nb zigzag junctions

The zigzag Josephson junction has been briefly introduced in Chapter 2. In general,
the zigzag Josephson junction is an array of Josephson contacts in a zigzag geometry
as shown in Fig. 4.1. In this configuration, all the Josephson contacts are aligned along
a 〈100〉 direction of the high-Tc cuprate. Analogous to grain boundary junctions, the
individual contacts in the zigzag junctions are referred to as facets. The facets oriented

Nb

a

f+p

YBa Cu O2 3 7

y

‹   ›100

f+0

YBa Cu O2 3 7-d

40 mm

Nb

‹ ›100

(a) (b)

Figure 4.1: (a) Sketch of a zigzag junction. (b) An optical image of a zigzag junction
between YBa2Cu3O7−δ and Nb with 40 µm facet-width. The facets are oriented along
the 〈100〉 directions of the YBa2Cu3O7−δ.
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along one direction are expected to experience an additional π-phase difference relative
to those oriented in the other direction due to the predominant dx2−y2-wave order
parameter symmetry of the high-Tc cuprate. Basically, in a zigzag Josephson junction,
multiple 0- and π-facets are placed controllably at alternating position.

In the zigzag structure, all the facets are aligned along either 〈100〉 directions
of the YBa2Cu3O7−δ, and are designed to have identical (absolute) values of the
critical current densities Jc. In order to create identical circumstances for all facets in
the zigzag structure, the samples were ion milled under an angle with the substrate
plane, with the in-plane velocity components of the incident Ar ions oriented along
the YBa2Cu3O7−δ 〈110〉-direction. Alternatively, the samples can be ion milled under
an angle of 45◦ with respect to the substrate plane and rotated during the ramp
definition.

Figure 4.1 (b) presents an optical image of a zigzag structure with 10 facets of
10 µm width. On the same chip, there are in total 4 zigzag junction with 80, 40,
10, and 8 facets of 5, 5, 40, and 25 µm width, respectively. In addition there are
two pairs of straight junctions facing the YBa2Cu3O7−δ 〈100〉 direction with 5 and
50 µm width. Each pair has junctions facing either 〈100〉 direction. Since the a- or
b-direction of the YBa2Cu3O7−δ crystal axes is not fixed along a certain direction in
the sample due to the possibility of twinning, the 〈100〉 symbol is used to describe
that it can be the a- or b-axis of the YBa2Cu3O7−δ film.

For the specific sample in Fig. 4.1 (b), the thickness of the bilayer YBa2Cu3O7−δ

and SrTiO3 are 150 nm and 100 nm, respectively, and the thickness of the Nb top
electrode is 140 nm. The ramp interface is prepared with 6 nm YBa2Cu3O7−δ and a
14 nm Au-barrier layer. Measurements on this sample will be presented later on in
this chapter.

4.3 Magnetic field dependence of the critical cur-
rent

4.3.1 Introduction

In Chapter 2, the magnetic field dependence of the critical current Ic(Ha) for a straight
junction and for a single 0-π junction with a uniform critical current density has been
discussed. It resembles the Fraunhofer pattern, which reaches the highest value of the
critical current Ic at zero applied field. On the other hand the Ic(Ha)-dependence for
a single 0−π-junction has zero critical current at zero applied field, in stark contrast
to the Fraunhofer diffraction pattern. The critical current reaches its highest value
when the applied magnetic flux per facet approaches 1

2Φ0.
The Ic(Ha)-dependence becomes somewhat more complicated for a zigzag array of

0−π-junctions. However, for a uniform critical current density, the Ic(Ha)-dependence
for zigzag junctions with an arbitrary number of facets can be comprehended in a
relatively simple theoretically model. In this case, an additional phase of π is added
to the current-phase relation for every facet facing one direction, and no additional
phase for facets facing the other direction (see Fig. 4.1, the ’+’ and ’-’ symbols in the
pairing symmetry functions are added for clarity). Then the zigzag junction can be
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Figure 4.2: The calculation result for the magnetic field dependence of the critical
currents of a zigzag junction with 10 facets, assuming a constant (absolute) value of
the local critical current density along the junction.

considered as a one dimensional series of independent facets with a critical current
density for facet j described by

Jj = Jc sin(φ + njπ) (4.1)

where j = 1, 2, ..., N with N is the number of facets, and nj = (−1)j+1
2 takes a value

of either 0 or 1, representing alternating facets with or without additional π-phase
shifts. The critical current is then the amplitude of the current density integration
for all facets, as described by equation 2.25. This gives

Ic(H) =

∣∣∣∣∣∣

N∑

j=1

∫ ja

(j−1)a

Jc(x)hei(φx+njπ)dx

∣∣∣∣∣∣
(4.2)

where a is the facet length. Assuming a constant local critical current density, inte-
gration and straight forward algebra yields

Ic =
Jcha

k








N∑

j=1

[(1− cos k) sin(njπ + jk) + sin k cos(njπ − jk)]




2

+




N∑

j=1

[(1− cos k) cos(njπ − jk)− sin k sin(njπ + jk)]




2




1/2 (4.3)

where k = 2πΦ/Φ0N , and Φ is the applied flux.
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Figure 4.2 shows the Ic(Ha)-dependence of a zigzag junction with 10 facets calcu-
lated from Eq. 4.3, assuming a constant (absolute) value of the local critical current
densities along the junction. Characteristic features of the Ic(Ha) patterns for the
zigzag arrays are the occurrence of sharp maxima in Ic for an applied magnetic flux
Φmax = NΦ0/2, and the vanishing Ic at Φ = 0 for an even number of facets. Further,
the number of minima in Ic in the flux range −Φmax < Φ < Φmax is predicted to
equal N−1. It is noted here that in this analysis possible self-generated magnetic flux
is not taken into account, which becomes important if the facet length is significant
in comparison with the local Josephson penetration depth [19, 57, 82, 83].

4.3.2 Measurement results

The critical current has been measured as a function of applied magnetic field for
various zigzag junctions. Each sample contains several straight junctions as refer-
ences. In all cases, the magnetic field Ha was applied along the [001]-direction of the
YBa2Cu3O7−δ unit cell. Critical currents were measured with a voltage bias below
5 µV. Variations of the bias voltage in this range did not affect the basic features in
the Ic(Ha) characteristics.

Figure 4.3 (a) shows a typical current-voltage I(V )-characteristic and Ic(Ha)-
dependence of a single YBa2Cu3O7−δ/Au/Nb Josephson junction oriented along the
YBa2Cu3O7−δ 〈100〉 axes. The I(V )-characteristic is hysteretic (which is indicated
in the Ic(Ha)-dependence with the black area), with a maximal value of the critical
current of Ic ≈ 6.0 µA, corresponding with Jc = 80 A/cm2, taking as the junction
area the product of the YBa2Cu3O7−δ layer thickness (150 nm) and the junction
width (50 µm). From this, the Josephson penetration depth λJ for these junctions is
estimated to be approximately 36 µm. The Josephson penetration depth is calculated
using Eq. 2.27, where the effective magnetic thickness t was calculated using the
YBa2Cu3O7−δ and Nb London penetration depth presented in Table 2.2 and corrected
using Eq. 2.22. The critical current decreases when increasing the applied magnetic
flux. Further increasing the applied flux, the critical current modulates and decreases
further. The Ic(Ha)-dependence resembles the Fraunhofer-like pattern described by
Eq. 2.26, with a large maximum in the critical current at zero applied magnetic field.

Figure 4.3 (b) displays the Ic(Ha)-dependence for an array of 8 facets of each 25 µm
width, placed in the zigzag geometry of Fig. 4.1. Clearly the maxima in the critical
current are now observed at a non-zero applied magnetic field, Ha = 1.1 µT. At this
field-value Ic equals 50 µA. In Fig. 4.3 (c) the Ic(Ha)-dependence is shown for an
array of 10 alternating 0- and π-facets of 40 µm width. Here the maximal Ic = 48 µA
is obtained at Ha = 0.46 µT. Finally, in Fig. 4.3 (d) the Ic(Ha)-dependence is shown
for an array of 80 facets of 5 µm width. This very complex array even shows highly
symmetric patterns with maxima occurring at non-zero applied magnetic field, namely
Ic = 41 µA at Ha = 5.1 µT. The ratios between the Ic-values at zero magnetic field
and the maximal critical currents are 17%, 6% and 27% for the arrays shown in
Fig. 4.3 (b)−(d), respectively.

The magnetic field dependencies of the critical currents for the arrays obviously
display the characteristic features indicated by Fig. 4.2, namely the absence of a global
maximum at zero magnetic field and the sharp increases in the critical current at a
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Figure 4.3: Magnetic field dependencies of the critical currents for (a) a 50 µm straight
junction, and zigzag arrays of (b) 80 facets of 5 µm width, (c) 8 facets of 25 µm width,
and (d) 10 facets of 40 µm width.

given applied magnetic field. This behavior can only be explained by the arrays being
comprised of facets alternatingly biased with or without an additional π-phase change.
As all facets are aligned along the 〈100〉 axes of the YBa2Cu3O7−δ and were prepared
in an identical way, intrinsic processes at the interfaces cannot be the cause of these
π-phase shifts and the results thus provide compelling evidence for a predominant
dx2−y2-wave symmetry of the order parameter in the YBa2Cu3O7−δ. It is noted that
the characteristics of the arrays resemble, in their basic features, the ones observed for
asymmetric 45◦ [001]-tilt grain boundary junctions [16, 53]. This strongly supports
the hypothesis that the anomalous characteristics of these grain boundary junctions
are due to the occurrence of regions with additional π-phase shifts along the interface.

With the employed ramp-type junction configuration, in which the ramp has a
slope of 20◦ with respect to the substrate plan, the interface normal-vector to the
barrier has a large component in the YBa2Cu3O7−δ c-axis direction. From this, a
significant c-axis component to the critical current of the array could in principle
be expected. If this contribution were to arise from an imaginary s-wave symmetry-
component of the order parameter in the c-axis direction, then its sign would not be
expected to change for the orthogonal adjacent facets. Therefore it would contribute
to the supercurrent that is observed at zero magnetic field. As Ic(Ha = 0) is found
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to be very small for all arrays, such an s-wave c-axis contribution is considered to be
small, if not negligible. The YBa2Cu3O7−δ films are twinned on a considerably smaller
length scale than the facets. If a c-axis component to the supercurrent would change
its sign over a twin boundary, e.g. in a real s-wave admixture, its contribution to the
supercurrent at zero magnetic field is expected to be averaged out. This scenario is
consistent with the data presented.

Admixture of complex order parameters

Order parameter symmetry tests thus far have shown that in YBa2Cu3O7−δ it is
predominantly dx2−y2 -wave [26], but none has unambiguously ruled out (complex)
order parameter admixtures. Because of the orthorhombicity of YBa2Cu3O7−δ, sub-
dominant order parameter components may be expected to arise, such as real admix-
ture dx2−y2+s and imaginary admixture dx2−y2+is. Various experiments to study
such possible admixtures often rely on tunneling along the 〈110〉 direction of the
YBa2Cu3O7−δ, which is the nodal direction of the dx2−y2-wave symmetry compo-
nent [84, 85]. In such a configuration, it is difficult to distinguish whether possible
subdominant components are intrinsic to the superconductivity in the YBa2Cu3O7−δ,
or whether they are induced only locally by the particularities connected with the
〈110〉 interfaces, e.g., the presence of Andreev bound states [84, 85]. Therefore, order
parameter symmetry test experiments that avoid such 〈110〉 surfaces, as is the case
for the zigzag arrays, are of particular interest.

In chapter 2, some possible admixture pairing symmetries are shown and plotted
in momentum space, such as dx2−y2+is and dx2−y2+idxy. In the case of dx2−y2+is,
the relative phase difference for orthogonal directions in k-space is 0 < φ < π, and is
dependent on the strength of the complex s-wave admixture. For a gap function of
the form ∆k = (1 − ε)∆d + iε∆s, where ∆d and ∆s represent the dx2−y2-wave and
s-wave order parameter, respectively, and ε is the fraction of the s component, the
phase difference γ along orthogonal directions can be generalized as

γ = π − 2 arctan
∣∣∣∣

ε

1− ε

∣∣∣∣ (4.4)

The phase shift γ reduces to γ = π for pure dx2−y2 -wave symmetry (ε = 0), and to
γ = 0 for pure s-wave symmetry (ε = 1). The supercurrent density in zigzag junctions
for each facet can the be described as

Jj = Jc sin(φ + njγ), (4.5)

Using a similar method to Eq. 4.3 leads to

Ic =
Jcha

k








N∑

j=1

[(1− cos k) sin(njγ + jk) + sin k cos(njγ − jk)]




2

+




N∑

j=1

[(1− cos k) cos(njγ − jk)− sin k sin(njγ + jk)]




2




1/2 (4.6)
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Figure 4.4: The magnetic field dependence of the critical currents of a zigzag junction
with 10 facets and 10% of imaginary s-wave admixture.

Figure 4.2 shows the Ic(Ha)-dependence of a zigzag junction with 10 facets calculated
from Eq. 4.6, assuming an admixture of 10% imaginary s-wave admixture to the
dx2−y2-wave symmetry. If the order parameter were to comprise an imaginary s-
wave admixture, the Ic(Ha) dependencies for the arrays would be expected to display
distinct asymmetries, especially for low fields. From the high degree of symmetry of
the measured characteristics, it can be concluded that there is only a small, if any,
imaginary s-wave contribution. It is noted here that due to the twinning in the films,
no conclusions can be drawn about possible real s-wave admixtures. Furthermore,
the presented configuration is insensitive to possible admixture of subdominant dxy

components, as all facets face a nodal direction of this symmetry component.

Flux focusing effects

For the two arrays with the smaller amount of facets, the number of minima before
reaching the global maxima in critical currents corresponds exactly with the theoret-
ical predictions following from Eq. 4.3, namely 4 for the array with 8 facets of 25 µm
width and 5 for the array with 10 facets of 40 µm width. For the array with 80 facets
of 5 µm width, the number of minima is somewhat smaller, namely 21 instead of the
expected 40. This difference can be attributed to the influences of flux focusing, cre-
ating a non-homogeneous flux coupling to the junction, as described for line-shaped
junctions e.g. in [86, 87]. Because of the flux focusing, the local flux density in the
center of the array is expected to be larger than at the edges, the effects of which
become increasingly noticeable for an increasing amount of facets in the arrays. Fig-
ure 4.5 shows the Ic(Ha)-dependence that was calculated for an array of 80 facets,
in the small limit, assuming the flux profile as indicated in the inset. By these simu-
lations it was found that the number of minima is reduced due to the flux focusing.
A striking feature following the simulations, which is also seen in the experiments, is
that although there is a sharp enhancement in the critical current when reaching the
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Figure 4.5: The magnetic field dependence of the critical currents for an 80 facets
junction under influence of flux focusing with a field distribution as in the inset.

major peak, due to the flux focusing, a more shallow decrease in Ic for larger applied
magnetic fields occurs. This does not follow from Fig. 4.2, in which flux focusing was
not considered.

4.4 Imaging of the local currents by LTSEM

4.4.1 Introduction

Low temperature scanning electron microscopy (LTSEM) represents a highly promis-
ing method for investigating physical phenomena in superconducting thin films and
Josephson tunnel junctions [74, 88, 89]. This technique allows one to image the critical
current density distribution with a spatial resolution of about 1 µm. It is based on the
scanning of a focused electron beam over the surface samples, while simultaneously
modifications of the critical currents are recorded. The effect of the electron can be
considered as a local heating resulting in an increase of the sample temperature at
the beam position. During the scanning process the sample is current biased at a
value Ib & Ic and the electron beam induced change δV (x, y) of the sample voltage
is recorded as a function of the beam coordinates.

4.4.2 Measurement results

The measurements were performed on the same zigzag sample described in Sec-
tion 4.3.2, when the sample was already about two years of age. The main attention
was to the zigzag junction with 8 facets of 25 µm width each. Before LTSEM imaging
experiments were performed, the sample was electrically characterized in a Helium-



54 Chapter 4. YBCO-Nb zigzag junctions

I
(

A
)

c
m

-6 -4 -2 0 2 4 6 8

H ( T)a m

-8

40

20

0

-20

-40

Figure 4.6: The magnetic field dependence of the critical currents of a zigzag sample
with 8 facets of 25 µm width, measured prior to the LTSEM experiments.

bath cryostat to address the question of whether the sample degraded in time and
of whether the same electrical characteristics as those obtained at the Universiteit
Twente could be reproduced. Figure 4.6 shows the Ic(Ha)-dependence of the above
mentioned junction at 4.2 K from the measurement performed at the Universität
Tübingen. The pattern is similar to the one obtained from the previous measurement
as in Fig. 4.3 (c). All small features in Fig. 4.3 (c) appear also in Fig. 4.6, with a
maximum critical current of about 45 µA. From this, it can be concluded that there
is no significant degradation in the sample.

Prior to the LTSEM imaging experiments, the Ic(Ha) characterization was redone
in the LTSEM. This was essential to identify appropriate points in the Ic(Ha)-pattern,
and to see the influence of the environment in LTSEM on the Ic(Ha) pattern. Fig-
ure 4.7 (a) shows the Ic(Ha)-dependence of the same junction mentioned above. In
this figure, the results of measurements in LTSEM setup is presented by the square
dots, and is compared to the Ic(Ha) pattern obtained from the measurement in the
liquid Helium cryostat presented by the solid line. The critical currents were measured
with a 6 µV voltage criterion. It is clear that the critical currents of the measure-
ments in LTSEM setup are reduced significantly compared to the measurements in
the liquid Helium cryostat. The maximum critical current of ∼ 15 µA in the LTSEM
falls to about 33% of its maximum value obtained from measurements in liquid he-
lium cryostat. This difference was due to a higher minimum-achievable temperature
of about 6.2 K in LTSEM, and to a noisier environment in the LTSEM than in the
liquid helium cryostat. Despite this difference, identical basic features are still present
in the LTSEM result.

Figure 4.7 (b) and (c) show typical LTSEM voltage images of the 25 µm facet
junction recorded at T = 6.2 K. The images were obtained by scanning the current
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biased junction and recording the electron beam induced change of the junction volt-
age as a function of beam position. For optimal results, the images were taken using
a beam voltage of Vbeam = 10 kV and beam current of Ibeam = 50 pA. The scanning
direction was perpendicular to a line connecting two next-nearest neighboring corners.
The junction was biased with a control current just above the critical current. The
white and black signals in the LTSEM images correspond to positive and negative
voltage changes, respectively.

Each micrograph in Fig. 4.7 corresponds to an applied field in the Ic(Ha) pattern
depicted. In Fig. 4.7 (b), an external applied magnetic field of Ha = −0.88 µT was
applied during the recording of the image, corresponding to the maximum critical
current in Ic(Ha)-pattern. The LTSEM voltage image at zero applied field was pre-
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Figure 4.7: (a) The magnetic field dependencies of the critical currents measured
in a liquid helium cryostat (solid line) and in the LTSEM setup (square dots). The
LTSEM images for (b) an applied field corresponding to the maximum Ic in the Ic(Ha)
pattern, and for (c) zero applied field. (d) The LTSEM images for both polarities of
applied magnetic fields.
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Figure 4.8: The voltage signals from the LTSEM measurements (a) for zero applied
field, and (b) for an applied field corresponding to the maximum Ic in the Ic(Ha)-
pattern.

sented in Fig. 4.7 (c). In this image the white and black signals alternatingly appear
on the facets from left to right. This situation is as theoretically expected because at
zero applied field the phase difference of the facets in the zigzag junctions is biased
alternatingly by an additional phase different of 0 and π, due to the dx2−y2 order
parameter symmetry in high-Tc cuprates. The situation is totally different for images
taken at an applied field corresponding to the maximum peak of the critical current
in the Ic(Ha)-dependence. In this case the LTSEM micrograph shows a single white
signal for all the facets in the junction. The images look qualitatively quite simi-
lar when the polarity of the magnetic field is changed, as shown in Fig. 4.7 (d). In
this case the sensitivity is different by a factor of 2.5 between the measurements in
the negative and positive applied magnetic fields. Changing the polarity of the bias
current, however, reverses the polarity of the signals as expected.

In general, a beam-induced change in the phase difference function cannot always
be ignored and can have a significant effect on the measured quantity δV , as pointed
out by Chang and coworkers [90, 91]. However for the case of small limit junctions
and for a small applied perturbation, this change in the phase difference can be ne-
glected [92, 93]. Figure 4.8 (a) and (b) show the voltage signals for zero applied field
and for an applied field corresponding to the maximum Ic in the Ic(Ha)-pattern,
respectively. Above these voltage signals, the corresponding voltage images are de-
picted. The voltage signals are plotted for a single line along the facet of the junction.
Since the measured zigzag junction is in the small facet limit, the measured voltage
signal is about proportional to the local current density. That is, the voltage image
shows the spatial distribution of the field-modulated critical current density along the
facet in the zigzag junction. This measurement is the first direct observation of the
Josephson current counterflow in a Josephson junction with built-in π-phase shifts.
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4.5 Concluding remarks

The realization and characteristics of zigzag-shaped YBa2Cu3O7−δ/Au/Nb junctions
are described. This demonstrates that high-quality thin-film ramp-type Josephson
junctions between the high and low temperature superconductors can be realized.
Even complex combinations of such structures can be fabricated on a single chip in a
controllable way.

The Ic(Ha) dependencies of the zigzag-shaped YBa2Cu3O7−δ/Au/Nb junctions
resemble, in their basic features, the ones observed for asymmetric 45◦ [001]-tilt grain
boundary junctions. The results provide evidence for a Josephson current coun-
terflow, in agreement with a π-phase shift between the two adjacent facets in the
zigzag junctions. This simultaneously provides evidence for a predominant dx2−y2 -
wave order parameter symmetry in the YBa2Cu3O7−δ. The highly symmetric Ic(Ha)
characteristics indicate that a possible subdominant imaginary s-wave admixture to
the dx2−y2 -wave order parameter symmetry, if any, is below 1%. Furthermore, the
Josephson current counter flow in zigzag junctions has been directly observed by using
the low temperature scanning electron microscopy. This provides a direct proof of
the sign change in phase of the order parameter in YBa2Cu3O7−δ.

On the contrary to the grain boundary junction, zigzag Josephson junctions be-
tween dx2−y2 -wave and s-wave superconductors demonstrate the feasibility to realize
complex thin-film Josephson structures consisting of a multitude of π-loops. Besides,
such structures also provide a means to identify the pairing symmetry of the still con-
troversial high-Tc cuprates and to derive an upper bound for a possible admixture of
subdominant symmetry components to the order parameter symmetry of the cuprates.
Furthermore, it also enables one to realize theoretically proposed elements for super-
conducting (quantum) electronics [6–8, 23]. The latter has been demonstrated for
example as described in [21, 23].





Chapter 5

Pairing symmetry tests on
Nd2−xCexCuO4−y utilizing
zigzag junctions

The thin-film ramp-type Josephson junction between a high-Tc cuprate and a
low-Tc s-wave superconductor in a zigzag configuration has been demonstrated as
an excellent instrument for testing the order-parameter symmetry in the high-
Tc cuprate YBa2Cu3O7−δ. In this chapter, phase-sensitive order parameter sym-
metry test experiments are presented on electron-doped high-Tc cuprates utilizing
Nd2−xCexCuO4−y/Au/Nb zigzag junctions. The critical current densities of these
Josephson contacts are considerably larger than the grain boundary contacts em-
ployed so far for phase-sensitive experiments on the electron-doped high-Tc cuprates.
To address controversial questions of whether the pairing symmetry changes away
from optimal doping, the pairing symmetry tests are also performed on overdoped
Nd2−xCexCuO4−y samples. It is found that for the optimally doped and over-
doped Nd2−xCexCuO4−y a clear predominant dx2−y2-wave behavior is observed at
T = 4.2 K. Another issue is the possible pairing symmetry transition from dx2−y2 -
wave symmetry at T ≥ 3 K to s-wave symmetry at T ≤ 2 K. Investigations at
T = 1.6 K present no indications for such a change to a predominant s-wave symme-
try with decreasing temperature.

5.1 Introduction

The determination of the order parameter symmetry in the high temperature su-
perconductors is an important step towards the identification of the mechanism of
superconductivity in these materials. This includes its dependencies on the sign and
density of the mobile charge carriers, on temperature and possible other parameters.
For the hole-doped high temperature superconductors, such as YBa2Cu3O7−δ, a long-
lasting debate on the order parameter symmetry was settled by the clear dx2−y2-wave
behavior displayed in various phase-sensitive symmetry test experiments, as reviewed

59
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in [26, 34]. This result was confirmed by phase sensitive test experiments utilizing
zigzag YBa2Cu3O7−δ/Nb Josephson junction [17], as described in Chapter 4.

For the electron-doped materials, Ln2−xCexCuO4−y, with Ln = La, Nd, Pr,
Eu or Sm, y ≈ 0.04, only a few phase-sensitive test experiments have until now
been reported, all are based on grain boundary Josephson junctions. Tsuei and
Kirtley [26, 94] described the spontaneous generation of half-integer flux quanta
in Nd1.85Ce0.15CuO4−y and Pr1.85Ce0.15CuO4−y tricrystalline films at temperature
T = 4.2 K, presenting evidence for a dx2−y2 -wave order parameter symmetry. A sim-
ilar conclusion was drawn by Chesca et al. [95] from the magnetic field dependence
of the critical current for grain boundary-based π-SQUIDs in near optimally doped
La2−xCexCuO4−y, also at T = 4.2 K.

In contrast to these phase-sensitive experiments, a substantial volume of more
indirect symmetry test experiments exist for the electron-doped materials. The
conclusions from these studies are varying. Behavior in line with an s-wave, or
more general a nodeless, symmetry was reported e.g., from the absence of a zero-
bias conductance peak in Nd1.85Ce0.15CuO4−y tunneling spectra at T ≥ 4.0 K [96–
98] and from the temperature dependencies of the London penetration depth in
Pr1.855Ce0.145CuO4−y for 1.6 K < T < 24 K [99], in Pr2−xCexCuO4−y with varying
Ce-content (0.115 ≤ x ≤ 0.152) for 0.5 K < T [100], and in Nd1.85Ce0.15CuO4−y for
1.5 K < T < 4 K [101], in addition to several earlier studies [102–104]. On the other
hand, d-wave like characteristics were reported e.g., from the observed gap-anisotropy
in angle resolved photoemission spectroscopy on Nd1.85Ce0.15CuO4−y at T = 10 K
[105, 106], the temperature dependence of the London penetration depth in optimally
doped Pr2−xCexCuO4−y and Nd2−xCexCuO4−y (0.4 K < T ) [107, 108] and from the
observation of zero-bias conductance peaks in optimally doped Nd1.85Ce0.15CuO4−y

(T = 4.2 K) [109] and La1.855Ce0.105CuO4−y for 4.2 K < T < 29 K [110].
Recently, a transition from d-wave behavior for underdoped materials to

s-wave like behavior for the optimally doped and overdoped compounds was
reported from the temperature dependence of the London penetration depth
in Pr2−xCexCuO4−y and La2−xCexCuO4−y [99] and from the point contact
spectroscopy [111, 112]. Further, Balci et al. [113] suggested a temperature-
dependent change in the order parameter symmetry for optimally and overdoped
Pr2−xCexCuO4−y, with s-wave behavior at T = 2 K and d-wave behavior at T ≥ 3 K,
based on specific heat measurements.

In view of this still ongoing discussion, there is a need for further phase-sensitive
experiments, specifically to study possible changes with temperature and doping.
Tsuei and Kirtley [94] and Chesca et al. [95] succeeded in performing the first phase-
sensitive measurements on the electron-doped compounds based on grain boundary
junctions. A complicating factor in the phase-sensitive experiments conducted so far
is the geometrical restriction set by the use of the tricrystalline or tetracrystalline
substrates, and the intrinsically low critical current density of grain boundaries in the
electron-doped materials. This results for example in rather large values of the Joseph-
son penetration depth, which determines the spatial distribution of the half integer
flux quantum in the tricrystal experiment, leading to small signal amplitudes [94].
This makes such experiments very challenging, especially for investigation on non-
optimally doped compounds. For the SQUID-based experiment discussed in Ref. [95]
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the low grain boundary critical current densities required the use of rather thick
films (0.5 µm) and wide junctions (500 µm) to reach measurable levels of the critical
current. For further detailed studies, it is therefore advantageous to explore other
Josephson junction configurations, with potentially higher critical current densities.
In addition, it would be very fruitful to choose a configuration for the symmetry
test-experiment in which a large Josephson penetration depth presents an advantage
rather than a difficulty. Both aspects are fulfilled in the experiment based on zigzag-
shaped Josephson contacts between Nd2−xCexCuO4−y and Nb, separated by a Au
barrier layer, described in the following.

5.2 Nd2−xCexCuO4−y/Au/Nb zigzag junctions

The zigzag-configuration [Fig. 5.1 (a)] has been described in detail in Chapter 4,
where it was used to investigate symmetry admixtures to the predominant dx2−y2 -
wave symmetry in YBa2Cu3O7−δ and to model the faceting in the high-Tc grain
boundaries. In these structures, all interfaces are aligned along one of the 〈100〉-
directions of the cuprate, and are designed to have identical values of the critical
current densities Jc. With the high-Tc cuprate being an s-wave superconductor, the
zigzag-structure presents no significant difference to the case of a straight junction
aligned along one of the facet’s directions. With the high-Tc superconductor having a
dx2−y2-wave symmetry, the facets oriented in one direction experience an additional
π-phase difference compared to those oriented in the other direction. For a given
number of facets, the characteristic of these zigzag structures then depend on the
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Figure 5.1: (a) Schematic topview of a Nd2−xCexCuO4−y/Nb zigzag struc-
ture with facet-length a. (b) Schematic sideview illustrating the ramp-type
Nd2−xCexCuO4−y/Nb Josephon junction.
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ratio of the facet length a and the Josephson penetration depth λJ (see Chapter 4
and 6 and Ref. [83] for more discussion). In the small facet limit, a ¿ λJ , the zigzag
structure can be envisaged as a one-dimensional array of Josephson contacts with an
alternating sign of Jc, leading to anomalous magnetic field dependencies of the critical
current, as displayed for YBa2Cu3O7−δ in Chapter 4. In the large facet limit, the
energetic ground state includes the spontaneous formation of half-integer magnetic
flux quanta at the corners of the zigzag structures, as will be discussed in Chapter 6
and 7. All experiments on Nd2−xCexCuO4−y described below are in the small facet
limit.

Figure 5.1 (b) schematically shows the Nd2−xCexCuO4−y/Nb ramp-type junc-
tions that were used for the experiments. The fabrication procedures have
been described in Chapter 3. Both the optimally-doped and overdoped sam-
ples were prepared with a bilayer of 150 nm [001]-oriented Nd2−xCexCuO4−y

and 35 nm SrTiO3 and with a 160 nm Nb top electrode. For the opti-
mally doped films a Nd1.85Ce0.15CuO4 target, and for the overdoped cases a
Nd1.835Ce0.165CuO4 target is used. A 12-nm Nd2−xCexCuO4−y interlayer and a
12-nm Au barrier were employed for both the optimally doped and overdoped sam-
ples. In addition to zigzag structures with different size and number of facets, every
chip contained several straight reference junctions oriented parallel to one of the facet
directions.

The Nd1.85Ce0.15CuO4 films had a typical critical temperature Tc of 20 K, and the
Nd1.835Ce0.165CuO4 had a Tc of 13 K. The critical temperatures and corresponding
cerium doping levels for the optimally doped and overdoped films used in the mea-
surements were consistent with the known phase diagram of the doping dependence
of Tc for electron-doped superconductors [114].

5.3 Measurement results

The junctions were characterized by measuring the current-voltage (IV ) character-
istics and the dependencies of the critical currents Ic on applied magnetic field Ha,
using a four-probe method with the magnetic field parallel to the [001]-direction of
the Nd2−xCexCuO4−y in a well-shielded cryostat at T = 4.2 K and T = 1.6 K, as
described in Section 3.2.1. For the determination of the critical currents of the struc-
tures, a typical voltage criterion of Vc . 2 µV was used. This set a lower limit of Vc/Rn

to the determination of Ic, with Rn being the junctions’ normal state resistance.

Optimally-doped Nd2−xCexCuO4−y (x = 0.15)

Figure 5.2 (a) shows the Ic(Ha)-dependence recorded for a 50 µm wide straight
Nd1.85Ce0.15CuO4−y/Nb reference junction at T = 4.2 K, and in Fig. 5.2 (b) its zero-
field IV -characteristic. The Ic(Ha)-dependence closely resembles a Fraunhofer pat-
tern, which is the hallmark of small rectangular junctions with homogeneous current
distributions. A maximum Ic = 2.2 µA at zero applied field was found. Similarly
to the graphs shown for the YBa2Cu3O7−δ-based junction in Chapter 4, the black
areas in the peaks of the Ic(Ha) curves are indicative for the hysteresis in the IV -
characteristics. At T = 4.2 K, this junction has a typical critical current density of
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Figure 5.2: (a) Critical current Ic as a function of applied magnetic field Ha for
a 50 µm wide straight Nd1.85Ce0.15CuO4/Nb ramp-type junction (T = 4.2 K). The
dark areas correspond to the hysteresis in the current-voltage characteristic shown for
Ha = 0 in (b).

Jc = 29 A/cm2, where junction area A is defined by the Nd2−xCexCuO4-film thickness
times the junction width. This Jc is several times larger than that is attainable with
grain boundary junctions. From this Jc value, the Josephson penetration depth for
this sample is estimated to be λJ = 65 µm. With this, all the zigzag junctions are well
in the small facet limit. The Josephson penetration depth is estimated using Eq. 2.27,
where the effective magnetic thickness t is calculated using the Nd2−xCexCuO4−y and
Nb London penetration depth presented in Table 2.2 and corrected using Eq. 2.22.
The normal-state resistance Rn for this junction is 13 Ω, which gives an IcRn product
of about 30 µV and RnA = 1.0× 10−6 Ωcm2.

The Ic(Ha)-dependence for a Nd1.85Ce0.15CuO4/Nb zigzag junction having 8
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Figure 5.3: Critical current Ic as a function of applied magnetic field Ha for (a) a
Nd1.85Ce0.15CuO4/Nb zigzag array comprised of 8 facets of 25 µm width and (b) a
similar array with 80 facets of 5 µm width (T = 4.2 K).

facets of 25 µm width is presented in Fig. 5.3 (a). Instead of an Ic-maximum at
Ha = 0, a maximum Ic of 1.8 µA at Ha = 0.5 µT can be observed. This zigzag junc-
tion shows a highly symmetric Ic(Ha) pattern for both polarities of the current bias
and applied magnetic field. The critical current at Ha = 0 falls to less than 32% of
its peak value. Presuming that Jc for this junction is equal to the reference junction
described above, the zero field Ic is only 7% of the expected value for an equally long
straight junction, disregarding the wide-junction effects. It should be noted that also
the maximum Ic at Ha = 0.5 µT is 2 − 3 times lower than that is expected based
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on the Jc of the straight junction. As was shown by Zenchuk and Goldobin [83], a
zigzag structure with an odd number of corners is expected to produce spontaneous
magnetic flux for all facet-lengths. As the Ic(Ha)-dependence of Fig. 5.3 (a) is still
strongly non-Fraunhoferlike, this spontaneous flux is expected to be smaller than a
half-flux quantum per facet length (see Chapter 6 for more discussion). Nevertheless,
the considerable Ic-value at Ha = 0 and the reduced peak height at Ha = 0.5 µT may
be caused, at least partly, by this spontaneous flux.

In Fig. 5.3 (b), the Ic(Ha)-dependence for a zigzag array with 80 facets having a
substantially smaller facet length of 5 µm is shown, presenting a maximum Ic = 2.0 µA
at Ha = 2.8 µT. Also for this very dense zigzag structure, the Ic(Ha)-dependence is
highly symmetric. A very low ratio of 2% between the critical current at zero magnetic
field and the maximal critical current is found, and the zero field value is less than
0.5% of the expected value for the equivalently long straight junction.

The field dependencies of the critical currents of these zigzag structures clearly
exhibit the characteristic features also seen for the YBa2Cu3O7−δ case, as shown in
Chapter 4, namely the absence of a global maximum at Ha = 0 and the sharp increase
in the critical current at a given applied magnetic field. This behavior can only be
explained by the facets being alternatingly biased with or without an additional π-
phase change. This provides a direct evidence for a π-phase shift in the pair wave
function for orthogonal directions in momentum space and thus for a predominant
dx2−y2 order parameter symmetry.

From the calculated Jc and λJ mentioned above, the junctions are estimated to
be in the small facet limit. The self field effect is expected to be highly reduced. This
is manifested itself in highly symmetric Ic(Ha)-dependencies for all the junctions on
the sample. The variation in the Josephson critical current densities between the
facets is also expected to be relatively small. This can be seen from a relatively low
zero-field-peak of the Ic(Ha)-dependencies. For the same reason, the variation in
the facet length is estimated to be very low. A high variation in both parameters
(facet length and critical current density) will lead to a significantly-increased zero-
field peak. This increased zero-field value can also be induced by an additional real
s-wave admixture to the dominant dx2−y2-wave of the order parameter symmetry in
the Nd1.85Ce0.15CuO4 electrode. Since Nd2−xCexCuO4−y has a tetragonal structure,
i.e., a = b, an additional real s-wave admixture to the pairing symmetry is not
expected to emerge in this material.

If the order parameter were to comprise an imaginary s-wave admixture, the
Ic(Ha)-dependencies for the zigzag junctions would be expected to display distinct
asymmetries, especially for low fields, as discussed in Chapter 4. In addition, the
critical current at zero applied field is expected to increase with the fraction of s-wave
admixture. From the high degree of symmetry of the measured characteristics of
Figs 5.3 (a) and 5.3 (b) and the very low zero field Ic, no sign of an imaginary s-wave
symmetry admixture to the predominant dx2−y2 symmetry can be distinguished.

Overdoped Nd2−xCexCuO4−y (x = 0.165)

To investigate a possible change of the order parameter symmetry with doping, similar
zigzag structures using Nd1.835Ce0.165CuO4/Nb junctions were fabricated.
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Figure 5.4 (a) shows the Ic(Ha)-dependence measured at T = 4.2 K for a
Nd1.835Ce0.165CuO4/Nb zigzag junction with 8 facets of 25 µm width. This result
was registered using voltage criterion Vc = 0.5 µV at T = 4.2 K. Clearly one can
observe a maximum Ic of 2.4 µA at Ha = 0.75 µT. This zigzag junction shows also
a highly symmetric Ic(Ha) pattern for both polarities of current bias and applied
magnetic field. The critical current at Ha = 0 falls to less than 23% of its peak value.
Obviously, also these characteristics indicate a predominant dx2−y2 -wave symmetry.
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Figure 5.4: Critical current Ic as a function of applied magnetic field Ha for a
Nd1.835Ce0.165CuO4/Nb zigzag array comprised of 8 facets of 25 µm width, measured
at (a) T = 4.2 K, and (b) T = 1.6 K.
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The sign change of the dx2−y2 -wave symmetry is the dominant effect determining the
Ic(Ha)-dependencies of this zigzag junction. A lower zero-field value and the symme-
try of the pattern around zero applied magnetic field are indications that there is no
transition to an s-wave symmetry.

Temperature dependence of the pairing symmetry

A possible temperature-dependent change in the order parameter symmetry for op-
timally doped and overdoped Nd2−xCexCuO4−y was investigated by lowering the
measurement temperature to 1.6 K [113]. This is the temperature range over
which a change in the order parameter symmetry is expected, as reported for
Pr2−xCexCuO4−y from specific heat measurements [113].

Figure 5.4 (b) presents the Ic(Ha)-dependence of the same zigzag junction as pre-
sented in Section 5.3 with 8 facets of 25 µm width measured at 1.6 K. The pattern has
maximum peaks appearing at ±0.75 µT applied magnetic field. The pattern at 1.6 K
is characterized by a larger maximum of Ic = 2.8 µA and a larger hysteresis in the
current voltage characteristics than that at T = 4.2 K. It is clear that when cooling
down the samples to T = 1.6 K all the basic features displayed by the structures
at T = 4.2 K remain unaltered. The very minor asymmetries in the pattern, e.g.,
between the second maxima, are unchanged with temperature indicating that they
may originate from an artifact error in the measurements such as the stray field or
trapped flux away from the junction.

From this, it can be concluded that there is no indication for an order param-
eter symmetry crossover for Nd1.85Ce0.15CuO4−y in this temperature range, as was
recently reported for Pr2−xCexCuO4−y [113]. A similar result for an optimally doped
sample was observed, when cooling down this sample to T = 1.6 K all the basic fea-
tures displayed by the structures at T = 4.2 K remain unaltered as well.

5.4 Concluding remarks

In conclusion, phase-sensitive order parameter symmetry test experiments based on
Nd2−xCexCuO4−y-Nb zigzag junctions were performed. The results provide clear evi-
dence for a predominant dx2−y2 order parameter symmetry in the Nd2−xCexCuO4−y.
This corroborates the conclusions of studies performed with grain boundary junctions
in the optimally doped compounds. To verify various recent reports on possible order
parameter changes with overdoping and with decreasing temperature, the influence
of those parameters has been studied. No change in the symmetry was observed
when overdoping the Nd2−xCexCuO4−y compound. Further, the order parameter
symmetry was found to remain unaltered between T = 1.6 K and T = 4.2 K.

Because of the larger Jc’s as compared to grain boundary junctions, the cuprate-
Nb zigzag configuration presents a good instrument for further detailed order-
parameter symmetry test experiments. This may include a comparison between
Nd2−xCexCuO4−y and other electron-doped compounds such as Pr2−xCexCuO4−y

and La2−xCexCuO4−y.





Chapter 6

Half-integer flux quantum
effects in 1-d π-ring arrays

In chapters 4 and 5, one-dimensional arrays of 0-π Josephson junctions in a zigzag
configuration are considered, in which their facet-length is noticeably smaller than the
Josephson penetration depth. In that case, the sign difference between the currents
flowing through the 0- and π-facets causes a cancelation of the critical current at
zero magnetic field. This results in a strongly modified magnetic field dependence
of the critical current as compared to that for a conventional Josephson junction in
the absence of π-phase shifts. The latter case is characterized by the well-known
Fraunhofer-like magnetic field dependence of the critical current.

Intriguingly, under certain conditions, the built-in π-phase shift in 0-π junctions
can result in a phenomenon of spontaneous magnetization, even in the absence of a
bias current or an applied field. In the limit of the facet-length being much larger
than the Josephson penetration depth, the 0-π junction has a doubly degenerate time-
reversed ground state, which is characterized by a spontaneous generation of a half
magnetic-flux quantum, with a magnitude of 1

2Φ0 (Φ0 = h/2e = 2.07 × 10−15 Wb).
In this case, the self-generated half magnetic-flux quantum can be associated with an
additional π-phase-shift. The magnetic field dependence of the critical current of the
0-π junction then effectively changes and becomes identical to those for a conventional
junction in a large facet limit. In this chapter, investigations on half magnetic-flux
quantum effects in various 0-π zigzag junctions will be presented.

6.1 Introduction

A system with a spontaneous current and magnetic flux ground state was proposed
first by Bulaevskii et al. [61] when considering a superconducting ring with a Joseph-
son junction containing magnetic impurities. The spontaneous current emerges due
to a phase slip relating to a spin-flip scattering by magnetic impurities. Geshkenbein,
Larkin, and Barone [2, 3] proposed a new vortex state of half magnetic-flux quanta
which can exist at the domain walls between different degenerate superconducting

69
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states in multicrystals, depending on the symmetry properties of the order parameter
in the superconducting phases. This half magnetic-flux quantum state is energetically
favored and it exists at the intersection of the three boundaries between three crystal
grains even in the absence of externally applied magnetic fields. In the context of
high-Tc superconductors with a dx2−y2 -wave order parameter symmetry, Sigrist and
Rice [4, 115] proposed a structure which could lead to this spontaneous generation of
half magnetic-flux quanta. The structure proposed by Sigrist and Rice [4, 115] was
a superconducting ring comprising two Josephson junctions between a high-Tc and a
low-Tc superconductor.

6.1.1 Spontaneous flux in π-rings

In a Josephson junction, the phases of the order parameters of both electrodes simply
adjust to minimize the Josephson coupling energy, ∝ − cos(ϕ2 − ϕ1), by setting the
phase difference, ϕ2−ϕ1, equal to n2π, with n an integer. In exception for Josephson
contacts along the nodal directions of the d-wave symmetry, therefore, the connection
by a single straight and smooth junction between two d-wave superconductors or
between a d-wave and an s-wave superconductor does not, by itself, lead to any
special observable effects but a conventional Josephson effect. On the other hand, an
intriguing effect, the spontaneous generation of half-integer magnetic-flux quanta, can
be expected to arise in coupled Josephson junctions involving superconductors with
a d-wave symmetry. This can be understood by considering a superconducting ring
with two facets between a dx2−y2-wave and an s-wave superconductor as depicted
in Fig. 6.1. The dx2−y2-wave symmetry in the high-Tc superconductor segment of
the ring introduces a π-phase-shift between the two junctions in the ring. In such a
system there is no way to simultaneously minimize the energy of both junctions, and
at the same time, to keep no phase gradient in the superconductors. The system has
to choose whether it is favorable to keep zero phase gradient in the superconductors
and to pay the maximal energy loss at the junction, or whether it is favorable to lower
the junction energy at the expense of a phase gradient in the superconductor. This
means frustration for this loop, and consequently such a loop will be referred to as
a frustrated loop or a π-ring. The phase gradient physically means the existence of
a finite current, and thus a spontaneous magnetic-flux. Because of the relationship
between the enclosed flux and the quantum-phase in a superconducting ring, the
spontaneous flux provides a further π-phase change between the facets, leading to a
lowering of the Josephson coupling energy. This will be discussed in more details in
the following.

As described in Chapter 2, the superconducting order parameter |Ψ|eiϕ must be a
single-valued function, and its phase ϕ is allowed to wind only by an integral multiple
of 2π when going around a closed contour, leading to the fluxoid quantization in a
superconducting ring. This means that the fluxoid has to be an integer multiple of flux
quanta nΦ0 (n = 0, 1, 2, ...). For a superconducting ring incorporating N junctions,
the fluxoid condition can be described as

Φa + IsL +
Φ0

2π

N∑

i=1

φi = nΦ0 (6.1)
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p

Figure 6.1: Sketch of a superconducting π-ring consisting of a 0- and π-facet from
combination of a dx2−y2-wave and an s-wave superconductor.

where φi is the phase difference across the junction i, Φa the applied flux, L the
self-inductance, and Is the circulating current.

The groundstate properties of the frustrated system can be determined by consid-
ering the free energy of a π-ring with one junction, given by [4, 115]

F (Φ, Φa) =
Φ2

0

2L

{(
Φ− Φa

Φ0

)2

−
(

L|Ic|
πΦ0

cos
(

2π

Φ0
Φ + θ

))}
(6.2)

where Φ = Φa + LIs is the total magnetic flux threading through the loop, and the
phase shift θ = 0 or π corresponds to an absence or a presence of a π-phase shift in
the ring, respectively. The circulating current Is as a function of applied field can be
obtained by minimizing F with respect to Is, and this leads to

Is

|Ic| = − sin
(

2π

Φ0
Φa + γ

Is

|Ic| + θ

)
(6.3)

where the dimensionless parameter γ = 2πL|Ic|/Φ0. The dependencies of the circu-
lating supercurrent on applied fields are depicted in Fig. 6.2 (a) for a 0-ring, and in
Fig 6.2 (c) for a π-ring. The dashed lines are for γ = 0.4, and solid lines for γ = 2.0.
The ground state properties of the systems are determined by γ. For γ < 1, the
Is’s for both 0- and π-ring are single-valued periodic functions. However, in a small
applied field, the shielding currents oppose the applied flux for the 0-ring but are
aligned with the applied flux for the π-ring. If γ > 1, then for the 0-ring Is is multi-
valued near Φa = Φ0/2, and for π-ring near Φa = 0. The π-ring has a spontaneous
magnetization which is aligned with a small externally applied field. In general, as
the junctions grow stronger (γ ≥ 1), it is favorable for a π ring to lower its energy at
the expense of a phase gradient in the superconductors which means the existence of
a spontaneous finite current.

At zero applied field Φa = 0, and for very large Ic, the circulating supercurrent
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Figure 6.2: Circulating current as a function of applied field for (a) a 0-ring and (c)
a π-ring. The dashed lines are for γ = 0.4, and the solid lines for γ = 2.0. The
free energy of the systems as a function of total flux (γ = 10) in the ring for (b) a
0-ring and (d) a π-ring. The π-ring has a doubly degenerate ground state which is
characterized by a spontaneous generation of half-integer flux-quanta at zero applied
field.

for a π-ring (θ = π) in Eq. 6.3 can be approximated by

Is ' ∓πIc

γ + 1
=

∓π
2πL

Φ0
+

1
Ic

(6.4)

Providing that LIc À Φ0 leads to

IsL ' ∓1
2
Φ0 (6.5)

The ground state of a frustrated loop is characterized by a spontaneous current or a
corresponding spontaneous magnetization of a half-integer flux-quantum 1

2Φ0 at zero
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applied field, providing that LIc À Φ0. In Fig. 6.2 (b) and (d), the free energy as a
function of the total flux Φ in the ring is plotted from Eq. 6.2 for the unfrustrated
and frustrated systems, respectively, assuming γ = 10. The free energy for the un-
frustrated system has a stable state centered at Φ = 0, while the frustrated one has
a doubly degenerate ground state at ± 1

2Φ0.
The spontaneous magnetization in a superconducting ring with N junctions in the

presence of an odd number of π-phase-shifts has been considered as well by Tsuei and
Kirtley [5, 26], leading basically to the same result, as described in the following.

For a π-ring with two junctions as depicted in Fig. 6.1, the fluxoid quantization
can be expressed by

Φa + IsL +
Φ0

2π

2∑

i=1

φi = nΦ0 (6.6)

where φi is the phase difference across the junction i. For superconducting loops in-
corporating Josephson junctions with relatively large Ic’s, the circulating supercurrent
Is = Ici sin(φi + θ) can be approximated by

Is

Ici
' φi + θ (6.7)

where θ again equals to π to represent the π-phase difference between the two junctions
in the loop. The circulating supercurrent can be obtained by combining Eq. 6.7 into
the flux quantization condition of Eq. 6.6. In the absence of external applied fields
and taking n = 0 for the ground state of the system, this leads to

Is =
π

2π

(
L

Φ0

)
+

2∑

i=1

(
1
Ici

) (6.8)

and if the condition of LIci À Φ0 is fulfilled, the π-ring is characterized by a sponta-
neous generation of a magnetic flux of

IsL ≈ Φ0

2
(6.9)

even at zero applied field and bias current, as was the case for the single-junction
π-loop described above.

6.1.2 First direct observation

A spontaneously-generated half-integer magnetic-flux quantum has been observed first
in a tricrystal ring experiment [5]. The tricrystal geometry has been discussed in
Chapter 2. In short, the frustrated three-junction ring is located at the tricrystal
meeting point, and as reference two two-junction rings and one ring with no junction
are either at the bicrystal grain boundary or not at a grain boundary as shown in
Fig. 6.3 (a). The frustrated three-junction ring has a total π-phase change when cir-
culating around the ring due to the dx2−y2 -wave symmetry, and thus a spontaneous
magnetization is expected in the ring. The control rings are in a 0-ring configuration
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(a) (b)

Figure 6.3: (a) Sketch of a tricrystal ring experiment (b) Spontaneous generation of a
half-integer magnetic-flux quantum observed in the tricrystal ring experiment (taken
from [51]).

(no additional π-phase shift) and should exhibit the standard integer flux quantiza-
tion.

Figure 6.3 (b) shows a scanning SQUID microscopy image of a tricrystal sample
cooled to 4.2 K in a magnetic field estimated to be less than 0.4 µT. It was found that
the central frustrated ring has 1

2Φ0 total flux in it, while the control rings contained
no magnetic flux. The control rings were visible in the image due to the mutual
inductance coupling between the rings and the pick-up SQUID loop.

By using this tricrystal geometry, Tsuei, Kirtley, and co-workers observed a
spontaneous generation of a half-integer magnetic-flux quanta in other high-Tc

cuprates, such as GdBa2Cu3O7−δ [116], Tl2Ba2CuO6+δ [117], Bi2Sr2CaCu2O8+δ

[118], Nd1.85Ce0.15CuO4−δ [94], and Pr1.85Ce0.15CuO4−δ [94], indicating that dx2−y2 -
wave pairing symmetry is dominant in all these cuprates.

6.1.3 Spontaneous-flux in zigzag junctions

When the inner diameter of the superconducting π-ring sketched in Fig. 6.1 equals
to zero, the ring is reduced to a corner junction. In this case, the π-phase-shift
rises between the two adjacent facets. Zigzag arrays can then be regarded as a one-
dimensional array of corner junctions. The characteristic value of LIc/Φ0 is now
substituted by the ratio between facet length a and the Josephson penetration depth
λJ .

The dependencies of the critical current Ic on applied magnetic field Ha for zigzag
junctions with facet length a ¿ λJ (small-facet limit) have been discussed in Chap-
ter 4 and 5. In short, the dx2−y2-wave symmetry in the high-Tc superconductor causes
a sign difference between the currents flowing through the 0- and π-facet. This re-
sults in a cancelation of the critical current at zero magnetic field and in an anomalous
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Ic(Ha)-dependence. In this short facet limit, a uniform critical current density dis-
tribution in the junction is assumed, and the self field effect from the supercurrent
can be neglected. However, for facets in the long limit (a À λJ), this assumption is
no longer valid because the presence of the self-field from the supercurrent introduces
a perturbation to the phase-difference profile (current density distribution) along the
junction, even in zero external applied field. In this case, the total critical current
can be calculated by first determining the phase-difference profile along the junction.
In the following, the single 0-π (corner) junction will first be considered, after which
the analysis will be extended to zigzag arrays comprised of multiple corner junctions.

The electrodynamics of a conventional long limit junction is described by the sine-
Gordon equation [30] and has been discussed in detail in [24, 31]. The sine-Gordon
equation can be extended to include the effects of π-shifts:

∂2φ

∂x2
=

1
λ2

J

sin [φ(x) + θ] (6.10)

where θ is equal to 0 for a 0-facet and π for a π-facet. By using appropriate boundary
conditions, this differential equation can be solved numerically such as described for
example in Ref. [119]. The free energy for 0-π junctions in the presence of a sponta-
neous magnetic flux (a vortex solution) is the sum of the Josephson energy and the
magnetic energy as

FV =
Φ0Jch

2π

∫ a

−a

[
1− cos [φ(x) + θ(x)] +

λ2
J

2

(
∂φ

∂x

)2
]

dx (6.11)

while the free energy in the absence of spontaneous magnetic flux (no-vortex solution)
is

F0 =
Φ0Jch

2π

∫ a

−a

[1− cos θ(x)]dx (6.12)

The free energy of a single 0-π junction with a linear configuration has been discussed
by Xu et al. [120] for the limiting case of a/λJ → ∞ and by Kirtley et al. [119] for
intermediate cases.

The solutions for the free energy of 0-π junctions described in Eq. 6.12 have
been calculated numerically using the sine-Gordon equation solver developed by
Kirtley et al. [121], applying a method as described in Ref. [119]. Figure 6.4 (a)
presents the phase difference across the junction as a function of position for var-
ious ratios between facet length and the Josephson penetration depth, a/λJ =
0.5, 1, 2, 4, 8, and 16, for a symmetric 0-π junction. The ratio of the free en-
ergy for the solution with spontaneous flux FV to that with no flux F0 is plotted as
a function of a/λJ in Fig. 6.4 (b). The solution with spontaneous flux always has a
lower energy than the solution with no flux, and thus it is favorable for a symmetric
0-π junction to generate some flux in its ground state. The flux distribution in the
0-π junctions is presented in Fig. 6.4 (c), and the total flux spontaneously-generated
in the system in Fig. 6.4 (d). At a large ratio of a/λJ , the spontaneous generated flux
approaches a value of 1

2Φ0.
Kirtley et al. [119] also addressed the question of spontaneous flux generation in

asymmetric 0-π junctions. They found that in this case the state with no flux has the
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Figure 6.4: (a) Phase difference across the junction, (b) the relative free energy of
the system with a spontaneous flux to that with no flux , (c) the distribution of the
spontaneous magnetic field, and (d) the total self-generated flux of a 0-π junction for
a/λJ = 0.5, 1, 2, 4, 8, and 16. In these calculations a is fixed to 10 µm.

lowest free energy for short junctions, and thus there is no spontaneously-generated
flux, up to a critical value of a/λJ . 1.

In general, when the facet length is much larger than the Josephson penetra-
tion depth (a/λJ → ∞), the spontaneously-generated flux is equal to a half-integer
magnetic-flux quantum. In this case, the spontaneous flux can be regarded as an addi-
tional π-phase shift, and thus the total additional phase-difference is simply changed
to 0 or 2π, depending on the polarity of the spontaneous flux. This means that the
π-facet effectively changes into a 0-facet. The Ic(Ha)-dependence for 0-π junctions in
the presence of the spontaneously-generated half magnetic-flux quantum is then basi-
cally identical to the long straight junction. However this approximation is not valid
in intermediate case [119]. It has been shown in Ref. [119] that, in an intermediate
case up to a/λJ = 10, the Ic(Ha)-dependence still has a minimum at zero applied
field, but its depth has been significantly reduced.

A zigzag junctions is basically an array of corner junctions. Using a similar method
to a single 0-π junction [119], the sine-Gordon equation for zigzag junctions can be
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Figure 6.5: (a) Phase and (b) magnetic field as a function of position in a zigzag
junction with 9 π-rings for Josephson penetration depth λJ = 64, 32, 16, 8, 4, and 2.
(c) The relative free energy and total spontaneous flux at each corner of the zigzag
junction as a function of ratio between facet-length and Josephson penetration depth.

solved numerically [121]. Figure 6.5 presents a solution of the sine-Gordon equation
for a zigzag junction with 10 facets of 40 µm width. The sine-Gordon equation for the
zigzag junction is solved for Josephson penetration depth of 64, 32, 16, 8, 4, and 2 µm.
Figure 6.5 (a) and (b) show the phase difference and spontaneous flux distribution
along the junctions for various Josephson penetration depth values. The relative free
energy and the total flux at the corners are presented in Fig. 6.5 (c). The system is
always ended up in a perfect antiferromagnetic arrangement of the fractional-fluxes,
and the spontaneous fluxes approach a value of 1

2Φ0 when λJ ≈ 4 µm.

The simulation results therefore suggest that a spontaneously generated half-flux
quantum is expected to emerge at every corner of the zigzag junction when a À λJ .
The Ic(Ha)-dependence and spontaneous flux measurements on the zigzag samples
with a À λJ will be presented in Section 6.2. Prior to the measurement results,
sample design aspects will be first given.
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6.2 Measurement results

To spontaneously generate complete half-integer flux-quanta, the facet-dimensions in
the zigzag junctions have to be much larger than the Josephson penetration depth,
a À λJ (large facet limit). Since the Josephson penetration depth is inversely pro-
portional to the square root of the critical current density, λJ ∼

√
1/Jc, the critical

current density has to be relatively large. By adjusting the Au-barrier thickness d,
the junction critical current density can be tuned in a wide range from 0.01 kA/cm2

for d ∼ 120 nm, up to values approaching 100 kA/cm2 for d ∼ 7 nm.
For the experiments discussed in this chapter, the samples were realized from a

150 nm YBa2Cu3O7−δ base electrode and 160 nm Nb top electrode while the Au-
barrier thickness is varied between 6 to 12 nm. With this, the critical current density
varies between 10 − 100 A/cm2. The samples were also designed to comprise zigzag
junctions with various facet lengths on a single chip, ranging from 5 µm to 40 µm.

To investigate the spontaneous magnetization effect of half-integer flux-quanta in
one-dimensional π-ring arrays (zigzag junctions), various samples have been fabri-
cated. For each sample, transport measurements were performed prior to imaging
by a scanning SQUID microscope. Transport measurements include investigations on
the I(V )-characteristics and the Ic(Ha)-dependencies.

6.2.1 The Ic(Ha)-dependencies

The I(V )-characteristics and the Ic(Ha)-dependencies were measured in a helium
cryostat at 4.2 K. In this section, experimental data will be presented on a sample
consisting of four zigzag junctions of; 80 facets of 5 µm, 10 of 40 µm, 40 of 5 µm,
and 8 facets of 25-µm width, four straight junctions of which two are 5-µm and two
are 50-µm wide facing either 〈100〉 direction, and two straight junctions of 100- and
200-µm width facing a 〈110〉 direction.

Figure 6.6 shows the I(V )-characteristics and the Ic(Ha)-dependence for straight
junctions at 4.2 K. In Fig. 6.6 (a), the Ic(Ha)-dependence for a 5-µm junction is
depicted, and in the inset its typical I(V )-characteristic at zero applied field. The
Ic(Ha)-dependence of the 5-µm junction resembles closely the Fraunhofer pattern
described by Eq. 2.26, with a maximum in the critical current of Ic = 0.28 mA at zero
applied magnetic flux. By estimating the effective area for current transport across the
junction A to be the thickness of the base electrode h times the width of the junction
a (A = h × a), a corresponding critical current density of Jc = 3.7 × 104 A/cm2

is obtained for this 0.15 × 5 µm2 junction. From this and by using Eq. 2.27, the
Josephson penetration depth λJ for this sample is estimated to be approximately
2 µm. From the Fraunhofer-like Ic(Ha)-dependence of the 5 µm junction, and from
the estimated-ratio between junction length and the Josephson penetration depth of
a/λJ ≈ 2.5, it can be concluded that the 5-µm junction is still in the small limit or
at least still in the intermediate limit.

The Ic(Ha)-dependence for a 50-µm straight junction is presented in Fig. 6.6 (b),
and in the inset its I(V )-characteristic. For this junction a/λJ ≈ 25, which implies
that the junction is well within the large facet limit. It can be obviously observed
in Fig. 6.6 (b) that the Ic(Ha)-dependence of this 50-µm junction resembles that
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Figure 6.6: The Ic(Ha)-dependence for (a) a 5 µm straight junction and (b) a 50 µm
straight junction. The typical I(V )-characteristic at zero applied field are shown in
the insets.

for straight junctions in the large facet limit [31]. The maximum critical currents
of Ic = 2.4 µm are slightly shifted from zero applied magnetic flux. However, the
maxima are symmetric through the point of origin. It has been discussed in detail
in [31] and now believed that the self field effect from the supercurrent has resulted in
the shifting of the maximum Ic from zero applied field and in a presence of asymmetry
of the maxima (and in general the Ic(Ha)-dependence) between positive and negative
applied fields. However, a symmetry should be observed when both bias current and
applied field were simultaneously reversed in polarity, i.e. the pattern has a symmetry
through the point of origin.

The ratio of Ic between the 50- and 5-µm junction of Ic(50 µm)/Ic(5 µm) = 8.6 is
comparable to the ratio between the facet-lengths of both junctions. The reduced Ic

from the expected value of 2.8 mA to a value of ∼ 2.4 mA for the 50-µm junction is
due to the wide junction effects. In addition to this, both junctions are placed ∼ 5 mm
apart, thus a slightly variation in the Au-barrier thickness is expected, leading to a
small variation in the critical current density of both junctions. Furthermore, the
flux can be easily trapped in a long junction and thus effectively reducing the critical
current at zero applied field. The normal-state resistance Rn for the 5-µm junction is
1.5 Ω, which gives an IcRn product of 0.42 mV and RnA = 1× 10−8 Ωcm2. For the
50-µm junction, Rn = 0.1 Ω, yielding an IcRn of 0.24 mV and RnA of 7.5×10−9 Ωcm2.

The Ic(Ha)-dependencies for YBa2Cu3O7−δ/Nb zigzag junctions are presented in
Fig. 6.7 for various configurations. For zigzag junctions with 5-µm facet length, it is
clear that the maxima in the critical currents were observed at a nonzero applied field
as depicted in Fig. 6.7 (a) for an 80-facets junction and (c) for a 40-facets junction.
A maximum critical current of Ic ∼ 5 mA was obtained at Ha ≈ 12.5 µT for the 80-
facets junction. At zero applied field, the critical current has significantly increased
to a value of Ic ∼ 2 mA from a zero expected-value. In contrast to a zigzag junction
in the small facet limit for which the critical current at zero applied field is reduced to
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Figure 6.7: The magnetic field dependencies of the critical currents for zigzag junc-
tions with (a) 80 facet of 5 µm width, (b) 10 facet of 40 µm width, (c) 40 facet of 5 µm
width, and (d) 8 facet of 25 µm width. For this sample, the Josephson penetration
depth λJ ≈ 2 µm.

a value approaching zero in the absence of disorder in the junctions, the ratio of the
critical current at zero field to that at Ha ≈ 12.5 µT falls to a value of approximately
40%. The significantly increased Ic from the zero expected value at zero applied field
is in agreement with the theoretical model for 0 − π junctions in the intermediate
facet limit [119].

Although other possible explanations, such as imperfections in the junctions and
a real s-wave admixture component, can not be neglected, the Ic(Ha) patterns for
zigzag junctions with a ¿ λJ as discussed in Chapter 4 indicate that such components
are very small. Furthermore, the YBa2Cu3O7−δ films are twinned on a considerably
smaller length scale than the facets. If there is a real s-wave admixture component,
its contribution to the supercurrent at zero magnetic field is expected to be averaged
out. Therefore, it can be concluded that the zigzag junction with 80 facets of 5 µm
width presented in Fig. 6.7 (a) is not well within the small-limit, instead it is still in
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the intermediate limit. A similar conclusion can be extracted from the value of the
ratio between the facet-length and the Josephson penetration depth of a/λJ ≈ 2.5,
taking λJ equal to the Josephson penetration depth of the reference junctions.

Figure 6.7 (c) shows a similar pattern for a 40-facet array of 5 µm-facet width,
with a maximum Ic of ∼ 2.5 mA at Ha ≈ 20 µT. In this pattern, a minimum with
a reduced depth of the critical current Ic ≈ 1.8 mA at zero applied field can be
clearly observed. For this particular junction, the critical current at Ha = 0 increases
even to approximately 72% of its peak value. These results indicate that some self-
generated magnetic flux could be present in the junction. The spontaneous flux
and possibly some self-fields may have resulted in the pronounced asymmetry in the
Ic(Ha)-dependence for both junctions. Remark that from the calculation presented
in Ref. [119] the Ic(Ha)-dependencies for 0-π junctions still have maxima at a finite
applied field and a minimum with a reduced depth at zero applied field even for an
a/λJ -value up to ∼ 10. So, the results presented in Fig. 6.7 (a) and (c) are well in
agreement with this theoretical prediction.

As the a/λJ -ratio increases, the critical current at zero field is expected to be
higher and the spontaneous flux approaches a value of 1

2Φ0 per corner point. Figure 6.7
plots the Ic(Ha)-patterns for larger-facet junctions. A zigzag junction with 10 facets
of 40-µm width is presented in Fig. 6.7 (b) and with 8 facets of 25-µm in (d). The
Ic(Ha)-dependencies show a maximum of Ic ≈ 9 mA for the 10-facet junction and
Ic ≈ 6 mA for the 8-facet junction. The maximum Ic for both junctions were observed
around zero applied field. The patterns have a symmetry through the point of origin,
but a symmetry breaking was observed between positive and negative applied fields.
Taking λJ = 2 µm, the a/λJ -values are 20 for the 10-facet junction and 12.5 for the
8-facet junction. Both the Ic(Ha)-dependence and the a/λJ -ratios imply that both
junctions are well within the wide-facet limit. Since the a/λJ -ratios for both junctions
presented in Fig. 6.7 (b) and (d) are considerably larger than 10, the results are also
in well agreement with the theoretical prediction presented in Ref. [119] .

To summarize, a half-integer flux-quantum is spontaneously generated at the cor-
ners of a zigzag junction when a À λJ . The formation of the half-vortices can be
regarded as an additional phase of π, and thus the expected Ic(Ha)-dependence will
be effectively changed and identical to that for a long straight junction. Therefore,
a spontaneously generated magnetic flux approaching a value of 1

2Φ0 is expected to
be present at every corner of the zigzag junctions with 10 facets of 40 µm width and
8 facets of 25 µm width. Meanwhile, the 80 facets of 5 µm width and 40 facets of
5 µm width junction are expected to generate fractional vortices which are less than a
half-integer flux-quantum. The imaging experiments by scanning SQUID microscopy
will be presented in the following.

6.2.2 Magnetic imaging by scanning SQUID microscopy

Figure 6.8 (a) shows a scanning SQUID microscopy image of a zigzag array with 10
facets of 40-µm width. In this figure, Niobium is at the bottom-left and YBa2Cu3O7−δ

at the top-right corner. The sample was cooled in nominally zero field, and imaged
with a 4-µm diameter octagonal pickup loop SQUID at 4.2 K. A spontaneously in-
duced magnetic flux is clearly seen at every corner of the zigzag array. The image
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Figure 6.8: [color] (a) Scanning SQUID micrograph of half-integer flux-quanta at the
corners of a zigzag structure with 10 facets of 40 µm width. (b) A 3D rendering of (a).
(c) The position along the junction where the cross section image of the spontaneous
flux in (d) was calculated.

shows that the lowest energy state of the system is characterized by an arrangement
of positive (pointing out of the sample surface as shown in red) and negative (pointing
into the sample surface as shown in blue) half-vortices on alternate corners (arranged
in an antiferromagnetic fashion). This antiferromagnetic ordering was found to be
very robust, occurring for many cool-downs and for different samples with compara-
ble geometries. In Fig. 6.8 (b), a three-dimensional rendering of the image is shown
with the positive vortices pointing downward. It shows that the half-vortices which
are at the Niobium side [presented by blue color in Fig. 6.8 (a) and pointing upward
in Fig. 6.8 (b)] are uniformly sharper than the half-vortices at the YBa2Cu3O7−δ side
[presented by red color in Fig. 6.8 (a) and pointing downward in Fig. 6.8 (b)]. In
addition, the half-vortices at the YBa2Cu3O7−δ site have a distinct dip to them right
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at the corner. This dip and the asymmetry between positive and negative vortices
is due to the Nb counter electrode overhang on the YBa2Cu3O7−δ base electrode.
While the source of the vortices is well localized, the overhanging Nb spreads it out
differently between corners at the Nb and YBa2Cu3O7−δ side. Nevertheless, the flux
is equal in shape for all the corners which are positioned at the same side. From this it
can be seen that Jc is uniform along the facets. In figure 6.8 (d), the cross-sections of
the half-vortices along the zigzag junction is presented with the cross-sectional paths
shown in Fig. 6.8 (c).

This experiment is the first direct observation of coupling of spontaneously gen-
erated half-integer magnetic-flux quanta. Later on in this section, experiments on
the other samples will be presented, where the coupling of spontaneously generated
half-integer magnetic-flux quanta is studied in more details.

In Section 6.1.3, the solution of the sine-Gordon equation for a zigzag junction
with 10 facets of 40 µm width has been presented, and schematically depicted in
Fig. 6.5. For this, the sine-Gordon equation has been solved for Josephson pene-
tration depth of 64 µm, and further as the sample is cooled down, the Josephson
penetration depth is decreased to 32, 16, 8, 4, and 2 µm. In this case, the sponta-
neous vortices always end up in a perfect antiferromagnetic arrangement because no
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Figure 6.9: (a) The solution for the phase and (b) the relative free energy for a zigzag
junction with various initial states (shown with small arrows in the legends). The
Josephson penetration depth is decreased as the sample is cooled-down. The state
with a perfect antiferromagnetic arrangement is always favorable than with a defect.
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perturbation in its initial condition is introduced. But if the calculation is started
with an initial defect, for instance with two positive and two negative half-vortices
next to each other, a meta stable solution is found. This solution was also obtained
numerically using the sine-Gordon equation solver developed by Kirtley et al. [121].
The phase difference distribution for various initial states is presented in Fig. 6.9 (a)
for λJ = 64, 16, and 2 µm. The solution for a system with a perfect antiferromag-
netic arrangement of the ↑↓↑↓↑↓↑↓↑ arrangement in its initial state is shown with a
solid line, and with a defect in its initial state having the ↑↑↓↓↑↓↑↓↑ and ↑↑↓↓↑↑↓↓↑
arrangements are presented with a dashed and dotted line, respectively. The relative
free energy for different initial states as mentioned above is depicted in Fig. 6.9 (b)
as a function of the ratio between the facet length and Josephson penetration depth.
It shows that it costs the system more energy in the intermediate limit (a ∼ λJ)
to have a state which deviates from a perfect antiferromagnetic one, and that when
a ¿ λJ or a À λJ it has no significant difference in the energy cost for the system
to have a state with or without a perfect antiferromagnetic one. It is noted here that
the calculation only includes the current term, but not the field coupling. It can be
therefore explained that during the cooling down process, the Josephson penetration
depth goes from being very long, in which case it does not matter whether there are
defects or not, to being very short, where again defects do not matter, through an
intermediate range where defects cost lots of energy. At those temperatures the an-
tiferromagnetic ordering sets in and freezes in because the barrier energy, the energy
to flip the polarity of the spontaneous vortices, is much larger than kBT .

To estimate the energy needed to flip the polarity of the spontaneous flux in zigzag
junctions, the solutions for the free energy of 0-π junctions described in Eq. 6.12
have been calculated numerically using the sine-Gordon equation solver developed

(a) (b)

Figure 6.10: [color] (a) Half-vortices in a zigzag junction with 8 facets of 25 µm
width. An Abrikosov vortex was found trapped far enough from the corners leaving
the vortices in a nice antiferromagnetic ordering. (b) The antiferromagnetic ordering
was distorted by an Abrikosov Vortex trapped near one of the corners.
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by Kirtley et al. [121], applying a method as described in Ref. [119]. The results
show that the free energy per facet, when the junction is in perfect antiferromagnetic
ordering, is ≈ −5× 106 K/λJ(µm). The energy cost to form a defect, by flipping one
spin, is ≈ 7.2 × 105 exp[−45/λJ(µm)]. This implies that when the free energy per
facet is comparable to kBT , the energy cost to form a defect is ≈ 7.2 × 105 K: it is
extremely energetically favorable to form perfect antiferromagnetic ordering in zigzag
junctions.

Remark that although the antiferromagnetic ordering was very robust for different
cool-downs and for different samples with a comparable geometry, deviations from
antiferromagnetic arrangement were also observed when a magnetic field was applied
during cool-down, or when Abrikosov vortices were found trapped in (or near) the
junction interface. Figure 6.10 shows arrangement of spontaneously generated vortices
in a zigzag junction with 8 facets of 25 µm width and with an Abrikosov vortex
trapped in the Nb or YBa2Cu3O7−δ electrode. In Fig. 6.10 (a), an Abrikosov vortex
was found trapped at quite a distance from the half-vortex arrays leaving them in a
nice antiferromagnetic arrangement, while in Fig. 6.10 the antiferromagnetic ordering
was distorted by an Abrikosov vortex trapped near one of the corners.

6.2.3 Half magnetic-flux quanta in background fields

In a nominal zero field, the half-vortices in a zigzag junction interact strongly with one
another to form an antiferromagnetic arrangement. To study the ordering of these
half-vortices in the presence of applied fields, the sample was cooled down in various
background fields [121]. A nominal cooling rate of 1 mK/sec through Tc was used.
A low frequency oscillation of a few tens of milliKelvin in temperature was observed
during cool-downs.

(a) (b)

Figure 6.11: (a) The total flux in a zigzag junction with 10 facets of 40 µm width as a
function of effective flux through the junction. (b) Visualization of the arrangement
of the half-vortices in the same zigzag junction.
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Figure 6.12: Scanning SQUID microscope images of zigzag junctions with 10 facets
of 40 µm, cooled in fields of (a) 0 nT, (b) 32 nT, (c) 74 nT, and (d) 110 nT, and
imaged at 4.2 K.

Figure 6.11 (a) plots the total flux in a zigzag junction with 10 facets of 40 µm
width as a function of the effective flux through the junction, for a number of different
cool-downs. The experimental results are described by the open circles and the theory
by the solid line. The arrangement of the vortices is visualized in Fig. 6.11 (b) with
black circles representing positive vortices (pointing out of plane of the sample) and
white ones negative vortices (pointing into the sample). The theory was obtained
by solving the sine-Gordon equation using a procedure in Ref. [20, 119] by increasing
the total effective applied fields in a 0.25Φ0 step. The cooling of the sample was
simulated by gradually shortening the Josephson penetration depth. The vertical
axis is the effective flux upon cooling. At high positive fields all the half-vortices
point out of the plane, and at high negative fluxes all of the half-vortices point into
the plane. Close to zero field the vortices take on an antiferromagnetic arrangement.
Figure 6.12 shows some examples of the flux arrangement when zigzag junctions are
cooled in externally applied magnetic field.

There are some disorder effects in the cooling process, as evidenced by the slight
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differences between two experimental runs as depicted in Fig. 6.11 (b). The simula-
tion results qualitatively present a similar but more symmetric arrangement than the
experiment with respect to inversion in position, or with respect to field reversal.

Nevertheless, the amount of intermediate states between the completely antiferro-
magnetic and completely ferromagnetic ordering coincides pretty well. One possible
source of the observed asymmetry might be field gradients. However, putting a linear
field gradient into the model did not improve the fit with experiment [20]. Another
source of asymmetry may be due to the coalescence of domains with short range or-
dering. Once this ordering has set in, it costs quite some energy to change it. The
asymmetry of the junction and lead geometry might also lead to this asymmetry.
The qualitative agreement between theory and experiments supports that the anti-
ferromagnetic coupling of the half-integer flux-quanta is through the phase at the
superconducting state and that the antiferromagnetic order is the ground state of the
system.

6.2.4 Coupling of half magnetic-flux quanta in connected ver-
sus unconnected structures

In the zigzag configurations as described previously, all the half-vortices were gener-
ated in a singly connected superconducting structure; the question therefore arises
as to whether the antiferromagnetic ordering is purely due to an interaction via the
superconducting connection between the vortex-generating corners or also to a mag-
netic interaction between the fractional vortices. To investigate this, an array of
corner junctions with a similar configuration as the zigzag junction but with 2.5-µm-
wide slits etched halfway between the π-rings has been fabricated. In this situation
there is no superconducting connection between the separate flux-generating corners,
leaving only the magnetic dipole-dipole coupling as the dominant interaction.

Figure 6.13 (a) and (b) shows optical photographs of a connected and unconnected
zigzag structure, respectively. Those structures were fabricated on the same chip and
placed close to each other to warrant identical circumstances but far enough to prevent
flux coupling between different zigzag junctions. In addition, the chip contained
several reference junctions. At temperature T = 4.2 K, these reference junctions
showed a typical critical current per micrometer junction width of Ic/w ≈ 0.1 mA/µm.
From this, a value for the Josephson penetration depth λJ ≈ 1 µm (T = 4.2 K) is
deduced. The scanning SQUID microscopy images are shown in Fig. 6.13 (c) for a
connected zigzag structure and (d) for an unconnected one. The images were made
at a temperature of 4.2 K, with an octagonal pick-up loop of 4 µm in diameter. Both
images were obtained at the same cool down, with the sample cooled and imaged in
a magnetic induction < 0.5 µT.

In Fig. 6.13 (c), a spontaneously induced magnetic flux is clearly seen at every
corner of the zigzag structure. For this junction the distance between the corners
a = 40 µm, which implies that the facets are well within the wide limit. The figure
shows that this section of the junction spontaneously generated 16 half-vortices which
were arranged in an antiferromagnetic fashion. This antiferromagnetic ordering was
very robust, occurring for different samples with comparable geometries as also having
been shown in the previous sections.
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Figure 6.13: [Color] Generation of half-integer flux-quanta in connected and uncon-
nected YBa2Cu3O7−δ-Au-Nb zigzag structure. The layouts of the zigzag structures
are shown in (a) for connected and (b) for unconnected structures. The scanning
SQUID micrographs of (c) 16 antiferromagnetically ordered half-vortices at the cor-
ners of a connected zigzag structure, and (d) 16 ferromagnetically ordered half-vortices
at the corners of a unconnected zigzag structure.

It is noteworthy here that in this particular sample, the half-vortices are more
symmetric between positive and negatives ones, as compared to the previous sample
described in Section 6.2.2. For the half-vortices at the YBa2Cu3O7−δ side, the fluxes
were not spread out but much more localized. This is due to a shorter Nb overhang of
2−3 µm as compared to the 5−6 µm for the sample of Fig. 6.8. Figure 6.13 (d) shows
a scanning SQUID image for an unconnected zigzag structure with a distance between
the corners equals to the facet length in the connected array, a = 40 µm. In this case, a
ferromagnetic arrangement of the fractional flux quanta was observed. The magnetic
interaction between the half-integer flux-quanta at this distance is expected to be
very weak, and alignment along minute spurious background fields in the scanning
SQUID microscope is anticipated to be the dominating mechanism for their parallel
arrangement.
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When the distance was decreased to about 20 µm, with a slit width of
1.5 µm, a tendency towards an antiferromagnetic coupling was observed as shown
in Fig. 6.14 (c). This image was made from the same chip which was cooled at the
same time as the previous two images in Fig. 6.14 (a-b). The half-vortices now seem
to have pretty random alignments. The random configuration can not be simply
explained by, e.g., a small background field, because all connected and unconnected
zigzag junctions were cooled at the same time under the same conditions.

To further test the strength of the magnetic field coupling, two connected zigzag
junctions were placed in parallel close together, but electrically disconnected from
one another, as shown in Fig. 6.14 (d-f) connected junctions were also fabricated.
Fig. 6.14 (d) shows a section of a 40 µm facet double junction that shows in-phase
alignment between the two anti-ferromagnetically ordered 1D chains. Because this

Figure 6.14: Scanning SQUID microscope images of zigzag junctions, cooled in nomi-
nally zero field, and imaged with a 4 µm diameter pickup loop. (a) Connected zigzag
junction with 40 µm facet lengths. (b) Unconnected zigzag junction with 40 µm
between facet corners. (c) Unconnected zigzag junction with 20 µm between facet
corners. Two parallel zigzag junction with (d) 40 µm, (e) 20 µm, and (f) 10 µm
between facet corners. The apparent curvature of the junctions in these images is
an artifact of the scanning mechanism. A tendency towards an antiferromagnetic
ordering was observed instead of a perfect ferromagnetic ordering for an unconnected
zigzag junction with a shorter corner-to-corner distance of 20 µm.
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arrangement places the positive half-fluxons in the lower left chain closest to the
negative half-fluxons in the upper right chain, this is the lowest energy arrangement.
However, in sections of the 1D chains which show defects, as in the center of the upper
right chains in Fig. 6.14 (e) and (f), the interchain alignment goes from in-phase to
out-of-phase when the interchain ordering has a defect, but one chain does not develop
a second defect to align the interchain spins. Therefore it appears that the energy
cost to create a defect is larger than the energy gain from making neighboring chains
in-phase. It appeared that also in this case the phase coupling was stronger than the
field coupling.

It can be concluded that antiferromagnetic coupling is also energetically favored
in unconnected zigzag junctions, but not nearly as strong as in connected zigzag
junctions. This was explored further in coupled two-dimensional arrays, which will
be described in Chapter 7.

Flux calibration

To calibrate the flux in the zigzag samples, Kirtley [121] used a method as follows. The
total flux through the SQUID pickup loop over a circle area is numerically integrated
and appropriately normalized by drawing concentric circles in the data, centered on
one of the Josephson vortices, as illustrated in Fig. 6.15 (b). To integrate the flux in
the data, WinImage1 software was used.

The integrated fluxes are then plotted as a function of the circle area. Since the
circle area becomes larger and larger, the total-flux value oscillates between positive
and negative limits, as the next positive or negative Josephson vortex is included in
the circle area.

(a) (b)

Figure 6.15: [Color] (a) Total flux in the junction as function of an increasing inte-
gration area as illustrated in (b). The total fluxes obtained from the experiment are
represented by the black dots and those from theory with different fitting parameter
by the solid lines. (b) Illustration of the integration area in the data.



6.3. Concluding remarks 91

The points in Fig. 6.15 (a) represent the data. The lines are fits with magnetic
monopoles of alternating sign at the appropriate positions. The fitting parameters
were the effective height z of the SQUID pickup loop above the sample surface, and
the absolute value of the total flux in each Josephson vortex. The best fit was obtained
for z = 7 µm, Φ = 0.43 + (0.11− 0.13)Φ0, using a doubling of the chi-square χ2 as a
measure of the uncertainty.

The peak heights in Fig. 6.13 (c) have a standard deviation of about 0.12 times
the average peak heights. This means that the total flux in the Josephson vortices
are uniform to at least that fractional value.

6.3 Concluding remarks

One-dimensional zigzag Josephson arrays are considered, in which the facet-length
is noticeably larger than the Josephson penetration depth. In this case, the built-in
π-phase shift in a zigzag Josephson array results in a phenomenon of spontaneous
magnetization even in the absence of a bias current or an applied field.

In the limit of the facet-length being much larger than the Josephson penetration
depth, the zigzag array has a doubly degenerate time-reversed ground state, which
is characterized by a spontaneous generation of half magnetic-flux quanta at every
corner, with a magnitude of 1

2Φ0 (Φ0 = h/2e = 2.07×10−15 Wb). In this case, the self
generated half-vortices can be regarded as an additional π-phase shift. The Ic(Ha)-
dependence of the zigzag junction then effectively changes and becomes identical to
those for a conventional junction in a large facet limit.

Using scanning SQUID microscopy, the spontaneous vortices in the zigzag junc-
tion have been observed and studied. The coupling of the half-integer flux-quanta
was compared between connected and unconnected zigzag junctions. It was found
that antiferromagnetic coupling is energetically favored in both connected and un-
connected zigzag junctions. The spontaneous vortex images of the connected and
unconnected junctions, which were cooled under the same conditions, show that the
antiferromagnetic coupling in the unconnected zigzag junction is not as strong as in
the connected zigzag junction.

Based on these results, Goldobin et al. [122] theoretically proposed that the order-
ing fashion of spontaneously generated half-integer magnetic-flux quanta in connected
0− π-zigzag-structures could be controllably altered by applying a current bias. The
initial antiferromagnetic ordering can than be totally modified, and becomes e.g., a
piece-wise ferromagnetic ordering. Simply put, in this case, the negative and positive
half-integer flux quanta have been separated from each other under the influence of
the Lorentz force, acting in different directions for a given direction of the biased-
current. Thus from the initial state ↑↓↑↓↑↓↑↓ it is proposed that one could arrive via
e.g., an intermediate state ↑↑↓↓↑↑↓↓ to the completely separated case ↑↑↑↑↓↓↓↓. The
experimental tests for this theoretical proposal seem to be easily accessible using the
low-Tc/high-Tc-junction-technology described in this thesis.

1WinImage software was written by Dr. J. R. Kirtley at IBM.





Chapter 7

Ordering and manipulation of
half flux-quanta in 2-d π-ring
arrays

For unconnected corner junctions at sufficiently close distances, the half flux quanta
are becoming antiferromagnetically arranged owing to magnetic interaction. To fur-
ther explore this, two-dimensional π-ring arrays have been realized in various config-
urations. The results of the experiments on these two-dimensional Josephson arrays
will be discussed in this chapter. The first configuration for which the generation
and coupling of half-integer flux quanta were investigated, was the triangular array.
This geometry is of particular interest, as with the preferential antiferromagnetic cou-
pling between the half-integer flux quanta, it provides a model example of a strongly
frustrated system, characterized by a highly degenerate ground state.

Investigations of spin interactions on the unfrustrated geometries are a common
way in which the Néel long range ordering of a spin system can be investigated.
Therefore, coupling of the half flux-quanta was also investigated and compared be-
tween frustrated and unfrustrated geometries. Scanning SQUID microscopy has been
used to study the ordering of half flux quanta in these structures. The possibility of
manipulating the polarities of individual half flux quanta is also demonstrated.

7.1 Introduction

7.1.1 The superconducting π-ring as an Ising spin

In Chapter 6, it has been shown that a superconducting ring with a built-in π-phase
shift has a doubly degenerate time-reversed ground state, which is characterized by
the spontaneous generation of half magnetic-flux quanta of ± 1

2Φ0 (Φ0 = h/2e =
2.07×10−15 Wb). In Fig. 7.1, this doubly degenerate ground state is represented by a
plot of the π-ring free energy as a function of the flux in the ring. The spontaneous flux
in the ring can basically take either the downward or upward direction, corresponding
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Figure 7.1: Doubly degenerate ground states of π-rings with a spontaneous generation
of magnetic flux ±Φm. Eb is the barrier energy between the two states.

to the clockwise or anticlockwise circulating supercurrent, respectively. With this, it
is possible to think of a π-ring as an Ising system [123]. In general, the Ising spin can
be described by a variable σ, which can take only two values: ±1.

The energy barrier between the positive spontaneous flux (spin up) and negative
flux (spin down) ground states of a π-ring can be derived from the free energy of such
systems. The free energy F of a superconducting π-ring of inductance L interrupted
by a Josephson junction with a critical current Ic is described by Eq. 6.2. In the
limit 1 − t ¿ 1 (t = T

Tc
) and Φa = 0, the spontaneous flux Φm can be obtained by

minimizing F with respect to Φ. This yields

Φm

Φ0
=

√
3

2π2

(
1− 1

β

)
(7.1)

where β = 2πLIc/Φ0. The barrier energy Eb to flip the sign of the rings’ circulating
supercurrent is then

Eb = F (Φ = 0)− F (Φ = Φm) (7.2)

and this leads to

Eb =
3IcΦ0

4π

(
1− 1

β

)2

(7.3)

The energy barrier is temperature dependent (because of the temperature dependence
of Ic), the lower the temperature the higher the barrier.

The spontaneous generation of a half magnetic flux quantum in a single π-ring
has been used in various phase sensitive pairing symmetry tests to provide an unam-
biguous signature for dx2−y2 -wave order parameter symmetry in high-Tc copper oxide
superconductors [26], and as a potentially practical application of dx2−y2 supercon-
ductivity [50]. These experiments were mainly conducted by using grain boundaries in
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Figure 7.2: Two isolated π-rings are placed in close proximity. Antiparallel alignment
of the spontaneous fluxes is favorable between the two rings.

high-Tc superconductors, induced by the epitaxial deposition on tri- or tetracrystalline
substrates [26, 50]. However, this technique does not lend itself to the construction
of coupled π-ring arrays, especially in a large number. Using thin-film ramp-type
YBa2Cu3O7−δ/Au/Nb Josephson contacts, on the contrary, it has been possible to
realize coupled π-ring arrays [17, 19, 21, 22], as presented in Chapter 6. The freedom
in fabricating π-rings in a large number and in various geometries results from the
standard optical photolithography technique that is used.

Linear arrays of π-rings have been presented in Chapter 6, which includes both
connected and unconnected arrays. In unconnected linear π-ring arrays at sufficiently
close distance, the half flux quanta are becoming antiferromagnetically coupled owing
to magnetic interaction. The antiferromagnetic flux-coupling between two supercon-
ducting π-rings, in the presence of a spontaneous magnetization in the rings, can be
understood by considering two of such rings, which are electrically isolated and placed
in close proximity in zero applied field as illustrated in Fig. 7.2. Suppose that both
isolated π-rings spontaneously generate half magnetic-flux quanta of 1

2Φ0 in their
ground state, and that the spontaneous flux in the left ring is pointing upwards. The
flux from the left ring will close its loop through the second ring because of the dipolar
nature of the magnetic field. The induced field from the left ring is then pointing down
in the right ring. The spontaneous flux in the right ring basically has a possibility to
choose either directions. If an upward direction is chosen, then the spontaneous flux
in the right ring must be larger than 1

2Φ0 in order to compensate the induced field
from the left ring and simultaneously to comply with the condition that the flux in
the ring must be equal to 1

2Φ0. On the other hand, if it is pointing down then the
spontaneous flux is less than 1

2Φ0, because the half magnetic-flux quanta condition is
accomplished by the induced field from the left ring. The latter situation is favorable
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for the π-ring since it costs the system less energy. Thus the spontaneous flux in the
right ring is effectively biased into a spin down state by the induced flux from the
left ring. The flux from the right ring then also closes its loop through the left ring,
favoring its spin up state. There is thus a net antiferromagnetic interaction between
rings.

The dynamics of flux-coupled superconducting π-rings are determined by the cou-
pling energy between the spontaneous flux of the rings Ec and the energy barrier
between the rings’ spin-up (+Φm) and spin-down (−Φm) states Eb. If the left and
right ring in Fig. 7.2 are labeled by i and j, respectively, the coupling energy Ec

between the rings can be written as

Ec = Mij |Ii||Ij |σiσj (7.4)

where Mij is the mutual inductance between the two rings, |Ii|, |Ij | are the amplitudes
of the circulating supercurrents in the rings, and σi = ±1 are the Ising variables
assigned to ring i, indexing the directions of the flux. If the circulating currents in
both rings are the same, then

Ec = MijI
2
i σiσj (7.5)

From the spontaneous flux of Eq. 7.1 and in the limit 1 − t ¿ 1, the circulating
supercurrent in the rings is

Ii =
Φm

L
=

Φ0

L

√
3

2π2

(
1− 1

β

)
(7.6)

and the coupling energy between the rings is approximated by

Ec =
MijΦ2

m

L2
σiσj (7.7)

The coupling energy between the rings is proportional to their mutual inductance,
and it grows as Ec ∼ (1− T/Tc)2. The effect that opposes the coupling between the
spontaneous fluxes is the increase of the barrier energy. As the rings cool below Tc,
the supercurrent densities grow until two distinct circulating states become allowed
for β > 1.

When the system is cooled in zero applied field, then at temperatures important
in the cooling process, close to the transition temperature Tc of Nb, the energy barrier
between spin up and spin down states is very small. Then the transitions between
the two states can occur spontaneously in both rings. Thermally activated switching
between spin up and spin down states has a transition rate [20, 124]

r ≈ βc

2πτ
e−Eb/kBT (7.8)

where βc = 2πIcR
2C/Φ0 is the junction hysteresis parameter, and τ ≡ Φ0/2πIcR is

the junction characteristic time.
Both Eb and Ec increase rapidly with decreasing temperature, and the increase

of the barrier energy leads to slower flipping rates until the flipping stops when
Eb/kBTf ≈ 1, where Tf is the freezing temperature of the flipping.
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7.1.2 Two dimensional antiferromagnetic Ising spins

Arranging π-rings on a lattice with an antiferromagnetic interaction between the rings’
spontaneous flux, two-dimensional Ising antiferromagnet models can be realized. Until
now, such systems have been studied with, for example, arrays of all-low-Tc super-
conducting rings biased at an external magnetic flux of 1/2Φ0 per ring [125–128], and
with low-Tc Josephson junction arrays [129]. Fluctuations in the dimensions of those
rings, resulting in variations in the flux bias and a lifting of the degeneracy, have
been found to be a major complication in these investigations [126–128]. The sponta-
neously generated flux in the YBa2Cu3O7−δ-Au-Nb structures provides an advantage

(a) Triangular (b) Square

(c) Kagome (d) Honeycomb

Figure 7.3: Geometries of (a) triangular, (b) square, (c) kagomé, and (d) honeycomb
lattices. The black dots represent the half-flux quantum sites. The dashed lines are
drawn only for clarity.
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in this respect, as the two flux states in these elements are intrinsically degenerate.
In arrays of conventional rings, since the experiments have to be done in a large

applied field [127], the long range antiferromagnetic coupling is destroyed by variations
in ring size, which act as random additional fields. This should not be the case for
arrays of π-rings, where the interesting field region is as close to zero as feasible. In
this respect, π-rings biased at close to zero field present a fundamental advantage over
conventional rings biased close to 1

2Φ0 per ring.
Various two-dimensional arrays of π-rings have been constructed. The four basic

lattices were the triangular, square, honeycomb, and kagomé lattices, shown schemat-
ically in Fig. 7.3.

Frustrated systems

The first configuration for which the generation and coupling of half-integer flux
quanta were investigated, was the triangular array. This geometry is of particular
interest, as with the preferential antiferromagnetic coupling between the half-integer
flux quanta, it provides a model example of a strongly frustrated system, character-
ized by a highly degenerate ground state [130]. Frustration arising from the lattice
geometry is called geometrical frustration. An example of geometrical frustration is
schematically shown in Fig. 7.4 for a triangular geometry. The isotropic antiferro-
magnetic coupling between the spins, Ec1,2 = Ec2,3 = Ec3,1, leaves the third spin
undetermined, while the first and the second spins choose an antiparallel arrange-
ment. Therefore, there is a competition between the spins’ interactions. Because of
this competing interaction no configuration of Ising spins can minimize the energy of
all interactions simultaneously. Even in the ground state (T = 0) some interactions
are broken, i.e., remain in the energetically unfavorable configuration. The frustrated
triangular and kagomé lattices are sketched in Fig. 7.3 (a) and (c), respectively. In the
case of a kagomé lattice there exists two kinds of polygons: triangles and hexagons.
Because of the geometrical frustration in the triangles, there is no way to minimize

?

Ec1,2 Ec2,3

Ec3,1

AFM

Figure 7.4: Frustration in a triangular geometry with an isotropic antiferomagnetic
(AFM) coupling between the spins.
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the energy in a unique way in such lattices [131]. The number of energetic ground
states diverges with system size [132]. As a result, the ground state is highly degener-
ate even at T = 0 [131], and there is no long range ordering. Even though there can
be no long order for the Ising model in this lattice, short range correlations are still
possible. In this case, the correlations are limited only to e.g., nearest or next-nearest
neighboring spins.

Unfrustrated systems

The natural way to investigate the existence of Néel long range order in two dimen-
sional Ising systems is to put the spins onto lattices of an unfrustrated geometry. The
unfrustrated square and honeycomb lattices are sketched in Fig. 7.3 (b) and (d), re-
spectively. These unfrustrated lattices basically can be separated into two sublattices
(bipartite), satisfying the condition that all the nearest neighbors of the first lattice
belong to the second lattice (Fig. 7.5). This is the ground state of the bipartite lattice,
which exhibits a long range ordering. In this ground state, all the vortices in the first
sublattice point upward and those in the second sublattice downward.

Low dimensional antiferromagnets are an area of much current interest in the field
of magnetism, and there are important unanswered questions about the effects of lat-
tice geometry and competing interactions on the ordering and dynamical properties
of such systems [131]. Making the spin systems lithographically leaves one consider-
able freedom to tailor their properties, and to realize two-dimensional spin systems in
many different configurations. This is in contrary to conventional three-dimensional
magnetic materials, in which chemical structures place strong constraints on the sys-

(a) Square
(b) Honeycomb

Figure 7.5: The groundstate of two-dimensional (a) square and (b) honeycomb Ising
spins with a nearest neighbor antiferromagnetic interaction. Black dots represent
spins pointing upward, and white dots downward. This ordered state is known as the
Néel state.
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tems available for study. More interestingly, spontaneously generated half-integer flux
quanta present an analogue to Ising-spins instead of to continuously rotatable spins,
which make the investigation on the spin-systems relatively easier.

Furthermore, although the magnetic compound SrCr8Ga4O19 with continuous
magnetic moments residing primarily on Kagomé lattices has been recently discov-
ered [133–135], no magnetic material with Ising-antiferromagnet spins residing on
Kagomé lattices has been found yet. In addition no experimental evidence of the
geometrical frustration on the Kagomé lattice is known [130]. In the following, ex-
perimental results using large arrays of photolithographically patterned π-rings as a
model spin system will be presented.

7.2 Measurement results

Images of spontaneously-generated half-flux quanta in the two-dimensional π-ring
lattices were taken by a high-resolution scanning SQUID microscope. The SQUID
microscope images shown here were made by snap shooting the frozen spin configu-
rations in the lattices at 4.2 K. The samples were cooled down through the Niobium
Tc in nominal zero field with a typical cooling rate of 10 mK/sec. The induced field
from the scanning SQUID microscope was estimated < 0.5 µT.

7.2.1 Magnetic imaging of triangular π-ring arrays

The first lattice samples were realized from two dimensional arrays of 0 − π corner-
junctions in a triangular arrangement. Various arrays were fabricated on a single
chip. The differences between the arrays on that chip were in the dimensions of, and

(a)
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Nb

Figure 7.6: (a) Sketch of a 0-π junction used as the element for triangular arrays
shown in (b) SEM micrograph of a triangular array of 0 − π junctions. In this case
the facet size is 5 µm and the distance between the center of nearest neighboring rings
is 12.5 µm.
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the separation between the elements. The building blocks of the lattices are shown
schematically in Fig. 7.6 (a). This element is a corner junction with a 5 µm facet
length, and it is arranged on a lattice with a 12.5 µm separation between the center of
nearest neighboring elements. Another array, which is built from 10 µm facet corner
junctions, has a 25 µm separation between nearest neighboring elements.

As discussed in Chapter 6, the spontaneous flux in 0−π-junctions is determined by
the ratio between the facet-length and the Josephson penetration depth a/λJ , while
the Josephson penetration depth itself is inversely proportional to the square root of
the critical current density. For a symmetric case, spontaneous flux is expected at
any value of a/λJ , but it approaches a half flux quantum when a/λJ = 4. Set by
a limitation in the maximum critical current density of 104 − 105 A/cm2 that can
be achieved in current YBa2Cu3O7−δ/Nb ramp-type technology, the smallest 0 − π
junction is designed to comprise of facets with 5 µm width. Assuming a critical current
density of 5 × 104 A/cm2, a ratio of a/λJ ∼ 4 is obtained for the 5 − µm-wide and
150-nm-thick junction area. Figure 7.6 shows Scanning Electron Microscopy (SEM)
images of a π-ring array built from 0-π junctions in a triangular arrangement. In this
array, the facet size is 5 µm, and the separation between the rings is 12.5 µm. The
thickness of YBa2Cu3O7−δ and Nb layer are 150 nm and 160 nm, respectively. In
total, the lattice has 16,000 π-rings of 0− π junctions.

Figure 7.7 depicts scanning SQUID micrographs of the arrangement of the frac-
tional flux quanta in a section of a triangular array for two different cooling downs.
In these images the brighter dots represent rings with supercurrents circulating clock-
wise and the darker dots counter-clockwise. In total, about 25, 000 half flux quanta

(a) (b)

Figure 7.7: [Color] Scanning SQUID micrographs of the flux state in a section of a
triangular lattice built from 0− π junctions at 4.2 K for two different cool downs (a)
and (b), respectively. Each dot represents a half-vortex, generated by a 0−π junction
with a facet length of 5 µm shown in Fig. 7.6.
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were observed on a single chip, of size 5 mm×10 mm.
To estimate the freezing temperature of the spin configuration, the energy for-

mulations described earlier in this chapter are used. Consider the condition at the
temperatures important in the cooling process, i.e., close to the Nb superconducting
transition temperature Tc. The temperature dependence of the critical current at
1− t ¿ 1 (t = T/Tc) can be approximated as

Ic(t) ∼ Ic(0)(1− t) (7.9)

For 5 µm facet length rings the self-inductance is estimated ∼ 16 pH, and the mutual
inductance between rings spaced by 12.5 µm is∼ 0.2 pH. The freezing of the individual
rings occurs when Eb

kBTf
≈ 1, where Tf is the freezing temperature. From Eq. 7.9 and

assuming that Ic(0) = 0.5 mA and Tc of Nb is 9 K, the freezing for the 5 µm facet
rings was estimated to occur at 1−tf = 2.2×10−2 (tf = TF /Tc). At this temperature
Ec/kBTf = 0.64. For comparison, the barrier and coupling energy for these rings at
the freezing temperature were estimated in the order of 18 K and 1.5 K, respectively.
The increase of the barrier energy grows much more rapidly than the increase of the
ring interactions.

Despite the random appearance of the spin configurations in the triangular lattices
presented in Fig. 7.7, some broken (long-range) correlations can be clearly seen. A
question to be addressed is then whether the apparently random configurations were
due to the geometrical frustration effects or to the dynamic (quenched) disorders. To
analyze this, the short-range correlation of the spin configurations is used and will be
discussed in the following.

Short-range correlation of the spin configurations

The predominant interactions in two-dimensional spin arrays occurs between nearest-
neighboring spins. A measure of such short-range correlations is the bond order
parameter σ [127, 136]. This quantity is defined as

σ = 1− xAFM

2x↑x↓
(7.10)

where xAFM is the fraction of antiferromagnetic near-neighboring bonds, which are
bonds between a half-flux quanta pointing upwards and its nearest neighbors pointing
downwards, and x↑(x↓) are the fractions of half-integer flux quanta pointing upwards
(downwards), respectively. For a completely random spin configuration, the antifer-
romagnetic bond fraction is equal to 2x↑x↓. This would mean that, e.g., for an equal
number of up and down spins in a lattice, the fraction of antiferromagnetic bonds is
50% of the total bond. From this, the bond order parameter for a completely random
spin distribution is σ = 0. An excess of ferromagnetic bonds over the random case
results in σ > 0, and of antiferromagnetic bonds σ < 0. A completely correlated
antiferromagnet would give a bond order σ of -1.

Figure 7.8 plots the theoretical σ-values as a function of the fraction of up-spins.
For unfrustrated lattices the theoretical best-value is represented by the solid lines
and for frustrated lattices by the dashed lines. The most-negative possible value of
σ for the unfrustrated lattice ranges from σ = 0 when x↑ = 0 or 1 to σ = −1 when



7.2. Measurement results 103

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

Unfrustrated

Frustrated

x

s

AFM

FM

Figure 7.8: Bond order parameter σ describing the short range correlation between
spins as a function of concentration of up spins. σ > 0 indicates ferromagnetic (FM)
correlations, and σ < 0 antiferromagnetic (AFM) correlations. Unfrustrated nearest
neighbor antiferromagnetic systems are bound by the solid line, and frustrated systems
by the dashed line.

x↑ = 0.5. This is due to the fact that for x↑ ≤ 0.5 the most antiferromagnetic possible
case in the unfrustrated lattices is when each up spin is surrounded by down spins.
Thus, the best antiferromagnetic-bond fraction x↑,best is equal to 2x↑. The best σ for
an unfrustrated lattice for a given spin-up fraction is therefore given by

σbest =
x↑

x↑ − 1
(7.11)

This bound in σ values is represented by the solid lines in Fig. 7.8.
For frustrated lattices, geometrical constraints do not allow up spins to avoid each

other when 1/3 < x↑ < 2/3, i.e., it becomes impossible to place up spins such that
there is no parallel alignment between nearest-neighboring spins in the lattices. In
this case, the best sigma is obtained by keeping the fraction of antiferromagnetic
constant and equal to that for the best sigma of x↑ = 1/3 or 2/3. Therefore, the best
sigma value for the frustrated lattice has a hump when 1/3 < x↑ < 2/3. This can be
described by

σbest =
x2
↑ − x↑ + 1

3

x2
↑ − x↑

(7.12)

and is shown by the dashed hump-line in Fig. 7.8. In this range, the difference in σ
between frustrated and unfrustrated lattices becomes prominent.

For the half-flux quantum image in Fig. 7.7 (a), there are 718 up half-vortices, 727
down half-vortices, 2246 antiferromagnetic (AFM) bonds, 1847 ferromagnetic (FM)
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(a) (b)

(c) (d)

Figure 7.9: (a) Scanning SQUID microscopy image of a triangular array of 0 − π
junctions with a facet length of 5 µm and spins spacing of 12 µm, cooled and imaged
in zero field. (b) Results of a Monte-Carlo simulation of the cooling process, with the
same bond order σ = −0.12 as (a). (c) An array with randomly assigned spins, with
equal probabilities of spin up and spin down. (d) Simulation resulting in nearly the
minimum possible bond order at x↑ = x↓ = 0.5 of σ = −0.32.

bonds, giving a bond order of σ = −0.0975. A similar analysis on Fig. 7.7 (b) shows a
bond order of σ = −0.1037, with a half-vortex up ratio of x↑ = 0.444. The theoretical
best bond order at x↑ = x↓ = 0.5 for a frustrated lattice, like the triangular lattice,
is about -0.34. Experiments on the larger facet arrays showed much smaller AFM
correlations. The above obtained numbers (about -0.1) are comparable to the results
of [127] for a triangular array of 0-rings biased at ∼ 1

2Φ0 per ring by an external
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magnetic field. However, one should realize that the experiments in [127] were done
with rings about 5 times smaller, and more closely spaced, than the smallest rings
employed in the 0-π corner junctions. Nevertheless, antiferromagnetic correlations
can be seen in π-ring arrays.

To explain the difference between the best theoretical sigma value and the experi-
ment value, Kirtley [121] developed a Metropolis Monte Carlo simulation to simulate
the cooling process of the rings using the model outlined in the introduction sec-
tion. Briefly, in these simulations a step is taken in temperature. The probability
of a spin flip Pi = (1 − T/Tc)2 exp−Eb/kBT is calculated for each ring [20]. A suit-
ably normalized random number is generated. If this number is less than the spin
flip probability, the spin of the ring is flipped. The process is repeated throughout
the array, and iterated a number of times at each temperature. The cooling rate is
decreased, and the number of iterations at each temperature is increased, until the
results are independent of each.

Figure 7.9 (a) shows a scanning SQUID microscopy image of a triangular array
of π-rings, with facet length 5 µm, and nearest neighbor spacing 12.5 µm, cooled
and imaged in zero field. In this image the white dots represent rings with super-
currents circulating clockwise; the black dots have counter-clockwise circulation. The
image in Fig. 7.9 (a) corresponds to σ = −0.12. The anti-ferromagnetic correlation
in Fig. 7.9 (a) is apparent in the small number and sizes of clusters of rings with the
same sign. Figure 7.9 (b) is the result of a Metropolis Monte Carlo simulation of the
cooling process, for a 30× 30 element array. For Fig. 7.9 (b) the coupling energy Ec

was scaled well with the estimated value mentioned in Section 7.2.1, which produces
the same bond order σ as was observed experimentally. Figure 7.9 (a) and (b) show
striking similarities in the size and number of small clusters and straight lines of rings
with the same spin. For comparison, the image of Fig. 7.9 (c), which has randomly
assigned spins, shows larger clusters. Figure 7.9 (d), which shows modeling with Ec

scaled up from the estimates above by a factor of 2, resulting in σ = −0.32, nearly
the minimum bond order possible, has almost no same-spin clusters. Note that the
modeling provides a natural explanation for incomplete antiferromagnetic ordering
in these arrays, with no need to invoke disorder effects. Since the π-rings are cooled
in zero field, they should not be susceptible to disordering due to lithographic varia-
tions in the size of the rings, as has been suggested for arrays of 0-rings. Increasing
the coupling energy between half magnetic-flux quanta is expected to increase the
sigma value in this experiment. This can be invoked by increasing the circulating
supercurrent in the rings and decreasing the ring separation. This experiment will be
presented later in this chapter.

Manipulating the spontaneous-flux polarities

In this section, the possibility to flip the polarity of the half-integer magnetic-flux
quanta is shown. Once the sample is cooled down to T = 4.2 K, the energy required
to alter the polarity of a half magnetic-flux quantum is considerably larger than the
thermal energy (Eb ≈ IcΦ0/π > 104 K), which is reflected in the temporal stability of
the flux pattern. To alter the polarity of the half magnetic-flux quanta, an externally
applied magnetic field is required.
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(a) (b)

Figure 7.10: [Color] Scanning SQUID microscopy images of two dimensional triangu-
lar array of π-loop. In this array, (a) ’IBM+UT’ and (b) a hexagonal pattern of six
half flux quanta were written by reversing the polarity of selected elements at zero
field and T = 4.2 K, after cooling in a magnetic field so that all half-vortices initially
have the same polarity.

Therefore, by applying locally a magnetic field, the polarity of the individual half-
integer flux quanta can be manipulated, enabling the possibilities of storing informa-
tion or of constructing desired patterns of fractional flux. This is demonstrated in
Fig. 7.10. After cooling down the sample in a background magnetic field, which leads
to a uniform polarity of half magnetic-flux quanta, a half-vortex pattern demonstrat-
ing ’IBM+UT’ letters written by setting the polarity of corresponding half-fluxons is
demonstrated and shown in Fig. 7.10 (a). Similarly in Fig. 7.10 (b), six half-fluxons in
a hexagonal arrangement with opposite polarity to the surrounding half flux quanta
are shown. These two patterns were realized in the triangular lattice with 25 µm ring
to ring spacing. The polarity of the half flux quanta in this sample with facet length
a = 10 µm was set by scanning a SQUID susceptometer [78] over the junction at a
rate of 0.005 mm/sec while applying a 2 mA current through the excitation coil (this
coil is 21 µm in diameter, and concentric and co-planar with the 8 µm square pick-up
loop). This corresponds to a field of approximately 50 µT at the junction. Reversing
the current direction reversed the resultant polarity of the half-vortex. Remark that,
once the sample is heated up above the critical temperature, the information will be
destroyed.

Kirtley [121] estimated that the critical field required to flip the polarity of the half-
vortex is roughly in agreement with numerical calculations. To estimate theoretically
the applied flux required to flip the flux polarity, the sine-Gordon solver [121] discussed
in Chapter 6 was used.

Figure 7.11 shows the solution of the Sine-Gordon equation for the 5 µm 0 − π-
junction, with a Josephson penetration depth of 1.5 µm. The figure displays dφ/dx,
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Figure 7.11: The solution of the Sine-Gordon equation for the 5 µm 0 − π-junction,
with a Josephson penetration depth of 1.5 µm. The applied flux starts out at zero,
and is increased in 0.2Φ0 steps (solid lines). The sign of the half-vortex flips at an
applied flux of about 2Φ0. The applied flux is then reduced to zero (dashed lines),
leaving the half-flux quantum in the opposite state.

where φ is the quantum mechanical phase. The flux per unit length per Φ0 is 1
2πdφ/dx.

To observe the flipping, the applied flux in the calculation is increased in steps until
the polarity of the flux is altered. This is shown with solid lines in Fig. 7.11. In
this figure, the applied flux starts out at zero, and is increased in 0.2Φ0 steps. The
sign of the half-vortex flips at an applied flux of about 2Φ0. The applied flux is then
reduced to zero (dashed lines), leaving the half-flux quantum in the opposite state.
The prediction for the larger rings with 10 µm facet length, a critical applied flux
of about 4Φ0, is also in reasonable agrement with the measurement [121]. When the
applied flux is further increased above the critical field, multiple Josephson vortices
enter, and then leave again as the flux is lowered, leaving only the half-vortex with
the opposite sign.

In addition to the spontaneous flux formation, the writing of half flux quanta pat-
terns provides a diverse basis for both fundamental studies and potential applications.
Flipping the polarity of a half-flux quantum while looking at the polarity of another
half flux quantum, for example, one can study the possibility to transfer information
from one site to another site in the arrays.

Flux calibration

To measure the uniformity of the spontaneous supercurrents in 0-π junction arrays,
Kirtley [121] calculated the peak heights of the spontaneously-generated fluxes in the
triangular arrays. Figure 7.12 shows a histogram of the peak heights for the data
in Fig. 7.7 (b). The peak positions in the histogram are not symmetric because of
interactions between the pickup loop and the corner junctions.
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Figure 7.12: The histogram of the peak heights for the data in Fig. 7.7.

The spontaneous currents generated in the corner junctions in the triangular array
of Fig. 7.7 were remarkably uniform, as indicated by a full width at half-maximum of
the distribution in peak heights which was about 0.28 times the average peak height.

Some spread in the distribution of spontaneous currents is not a dominant source
of disorder in the π-ring array cooling experiments because it will cause fluctuations
in the amplitude, as opposed to fluctuations in sign, of the ring-ring coupling.

7.2.2 Imaging of the half-vortices arrangement in frustrated
versus unfrustrated arrays

For Ising spins on an antiferromagnetic triangular lattice, the ground state is expected
not to be unique [131] and there is no long-range antiferromagnetic order. The absence
of long-range order originates from geometrical frustration. The magnetic behavior
of the ring arrays on this lattice therefore should be different from the magnetic
behavior in unfrustrated lattices. To investigate this, the half-vortex arrangements
were studied in unfrustrated lattices, and compared with those in frustrated lattices.

Magnetic-coupling optimizations

Another approach employed to build the arrays was by using π-SQUIDs as elements of
the lattices. Such elements are sketched in Fig. 7.13. π-SQUIDs have some advantages
compared to 0−π junctions. To spontaneously generate a half magnetic-flux quantum,
it is necessary that 2πLIc exceeds Φ0 for a π-SQUID, while for 0-π junctions the
requirement is a À λJ ∼ 1/

√
Jc. In other words, the spontaneously generated fluxes

in π-rings are dependent on the critical current Ic and in 0−π junctions on the critical
current density Jc. The junction critical currents in a π-ring can be simply increased
by using a much thicker film, and thus enabling smaller planar dimensions. Another
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Figure 7.13: Structures of π-rings used as elements for two dimensional lattices; (a)
a square-shaped π-SQUID, and (b) an hexagon-shaped π-SQUID.

advantage is that the π-SQUIDs have a higher inductance L than 0 − π junctions
with a comparable geometry. This would allow a somewhat lower Jc for π-SQUIDs,
still leading to half flux quanta generation. In addition, the flux in the π-SQUIDs is
expected to be better shaped because it is not influenced by the Nb overhang as is
the case for 0− π junctions.

To estimate the required π-SQUID dimensions, assume that the current density Jc

is 104A/cm2 and the junction thickness 150 nm. For a π-SQUID with inside diameter
R, width a, thickness t, the critical current is Ic = Jc × at. An estimate for the ring
inductance is L = 1.25µ0R [137]. The factor 1.25 gets bigger for smaller w/R ratios.
Assuming that w = R, one can show that the requirement 2πLIc = Φ0 becomes

R =

√
Φ0

2.5π2µ0Jct
(7.13)

This condition is satisfied for R = 2.1 µm, which leads to an outside diameter of
6.3 µm. For a 0-π junction, the requirement is a > 4.2 µm so that the length of
a facet will be longer than the Josephson penetration depth, assuming the same
current density. As a consequence, one can make smaller rings than corner junctions,
and still see spontaneous magnetization. Furthermore, the increase in inductance
with decreasing a/R would seem to make the advantage of rings slightly stronger.
Figure 7.14 plots the spontaneous magnetization as a function of ring inductance L
for a π-ring, compared with the spontaneous magnetization as a function of junction
width a for a symmetric 0-π junction. For a comparable Jc, the biggest advantage
of using π-SQUIDs is that one can just use a thicker layer to end up in the limit of
spontaneous half-flux quanta formation, while keeping the planar dimensions small.

To investigate the long-range ordering and frustration effects in the two dimen-
sional antiferromagnetic Ising spins, the magnetic coupling between the flux-generator



110 Chapter 7. Half-flux quanta in 2-d π-ring arrays

a

Figure 7.14: The spontaneous magnetization as a function of ring inductance L for a
π-ring, and as function of junction width a for a symmetric 0-π junction.

rings at the freezing temperature must be as large as possible, and with a relatively
small barrier between the two degenerate states. Both the barrier energy Eb and the
coupling energy Ec are temperature dependent. The ratio between Ec and Eb goes
as

Ec

Eb
∼ M

L2Ic

(
1− 1

β

) (7.14)

Hence, to optimize the magnetic coupling, the mutual inductance M of the rings has
to be as large as possible. To maximize the mutual inductance, the rings should be
as close to each other as possible, and with as high a critical current density across
the junction as possible. However the smallest dimensions of the rings are limited by
above mentioned conditions. In addition, lithography also sets a limit to how close
the rings can be placed.

Figure 7.15 shows scanning electron micrographs of π-ring arrays in four
different lattices: square, triangular, honeycomb, and kagomé, built from
YBa2Cu3O7−δ/Nb π-SQUIDs. The thickness of YBa2Cu3O7−δ and Nb layer are
300 nm and 160 nm, respectively. To maximize the mutual inductance, the rings
were made in square shapes on the square lattices and in hexagonal shapes on the
triangular, honeycomb, and kagomé lattices. For both shapes, the inner diameter
of the rings is 2.75 µm and the gap between rings is 3.00 µm. In total, the square,
triangular, honeycomb, and kagomé lattices have 19600, 22400, 15200, and, 19200
rings, respectively. Note that in the triangular, honeycomb, and kagomé lattices, the
rings’ dimensions and nearest neighbor spacings are identical, and so, presumably, are
the nearest neighbor interactions. Only the lattice connectivity is changed, i.e., all
lattices are based on the same triangular arrangement, but some elements are miss-
ing in the honeycomb and the kagomé lattice, leaving the remaining elements in the
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Figure 7.15: SEM micrographs of π-ring arrays with a square (top left), triangular
(top right), honeycomb (bottom left), and kagomé lattice (bottom right).

unfrustrated honeycomb and the frustrated kagomé configuration, respectively. For
these lattices, also the next nearest neighbor spacings are identical. For the square
lattice, in addition to the difference in the ring shape which is square, the next nearest
neighbor spacings are also different than the other three lattices.

Imaging results

Figure 7.16 shows scanning SQUID micrographs of the arrangement of the fractional
flux quanta in sections of four different lattices: the square, triangular, honeycomb,
and kagomé. In these images, the white dots represent rings with supercurrents circu-
lating clockwise, and thus spontaneous fluxes pointing downward; the black dots rep-
resent rings with counter-clockwise circulating supercurrents, and thus fluxes point-
ing upward. The ring configurations presented for the unfrustrated square lattice in
Fig. 7.16 (a) and the unfrustrated honeycomb lattice in Fig. 7.16 (c) show that there
are no obvious long-range correlations in these arrays. For both configurations, the
distribution of the spins also appears to be random. Nevertheless, if one carefully
looks, for example, at the left top corner of the honeycomb lattice, there is a nice an-
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(b) Triangular(a) Square

(d) Kagome(c) Honeycomb

Figure 7.16: Scanning SQUID micrographs of the (a) square, (b) triangular, (c) hon-
eycomb, and (d) kagomé lattices. The black dots represent spins up and white dots
spins down.

tiferromagnetic ordering at that specific area. In this case, up to 25 half magnetic-flux
quanta are antiferromagnetically arranged.

To see the effects of the lattice geometry, the bond order parameter for frustrated
and unfrustrated lattices can be compared, since the difference between all the lattices
but the square one is only the lattice geometry. The square lattice is built from a
building block which is different than that for the other three lattices. In addition,
it has a shorter next-nearest neighbor distance of 11.5 µm, while the others have
22.4 µm. Therefore, the bond order parameter for the triangular, honeycomb, and
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Figure 7.17: σ as a function of the fraction of upward pointing half magnetic-flux
quanta for the square, triangular, honeycomb, and kagomé lattice.

kagomé lattices can be compared directly. From the scanning SQUID micrographs
presented in Fig. 7.16, the bond order parameters were deduced, which are −0.16,
−0.24, −0.25, and −0.26 for the triangular, kagomé, honeycomb, and square lattices,
respectively, at x↑ ∼ 0.5. Except for the triangular array, there is no significant
difference between the bond order parameters for both the frustrated and unfrustrated
lattices, indicating that most of the disorder in the frustrated lattices is due to the
dynamical disorder instead of geometrical frustration effects.

Figure 7.17 shows the bond order parameter for both the unfrustrated and frus-
trated lattices, as a function of the up-spin fraction in the lattices. The fraction of
the up-spins, and thus the down-spins, was modified by cooling the sample in a back-
ground field. The transition from all spins up to all spins down was found to be very
sharp, which is about 0.9 µT from 80% to 20% spins up. For these rings, one flux
quantum is equivalent to 70 µT. This means that the transition width is about 1% of
Φ0. This value is very comparable to the results for unconventional rings discussed
in [127], even though the 0− π rings are much larger.

It can been seen in Fig. 7.17 that there is some scatter in the bond order parameter
versus field curves, but there are some real qualitative differences between the arrays:
the honeycomb and kagomé lattices have the strongest correlations, peaking at a
sigma of -0.25. The triangular lattice has weaker correlations, peaking at about -0.16.
Therefore, it can be concluded that open lattices, like the kagomé and honeycomb
have stronger antiferromagnetic correlations than the triangle one, and that the effect
of lattice geometry is more significant in the triangular lattice. The unfrustrated
square lattice has also comparable antiferromagnetic correlations, but recall that in
the square lattice the next nearest neighbor spacing is considerably smaller than
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Figure 7.18: Scanning SQUID microscopy images of a honeycomb array in the ge-
ometry illustrated in Fig. 7.15, cooled in nominally zero field through the Nb su-
perconducting transition temperature at different cooling rates. The white circles
superimposed on the images label 6-ring loops in the honeycomb lattice in which the
rings are perfectly antiferromagnetically ordered.

that for the other lattices, leading to presumably a stronger next nearest neighbor
interactions.

From the simulation [121], it appears that much of the disorder observed in these
array cooling experiments can be attributed to the dynamical effects, as opposed to
geometrical frustration effects. This is supported by the fact that the best bond orders
obtained for the unfrustrated square and honeycomb lattices are approximately the
same as those for the frustrated kagomé lattice.

For the triangular lattice, the best bond order of -0.16 obtained from Fig. 7.16
is considerably better than those obtained from the triangular lattices discussed in
Section 7.2.1. In the latter case, the best bond order is only -0.10. The increased
bond orders are perhaps due to the increase in current densities and the reduction in
inter-ring separation, reducing the dynamical disorder effects. Therefore, the disorder
in the triangular arrays may partly be due to the dynamical disorder, but from the
significant negative sigma value one may also anticipate that it is partly due to the
frustration-effects. The system may not have reached its energetically ground state,
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as for this it may need much more time to adjust all the spins during cool-down. The
antiferromagnetic ordering therefore should be improved if the arrays are cooled more
slowly through the Nb superconducting transition.

Figure 7.18 shows scanning SQUID microscopy images of a honeycomb array in
the geometry illustrated in Fig. 7.15, cooled in nominally zero field through the Nb su-
perconducting transition temperature at different cooling rates. Each panel is labeled
with the cooling rate and experimentally determined bond order σ. The antiferro-
magnetic ordering increases with slower cooling rates. One question that can be asked
is: Do particular regions of the arrays order more strongly than others? The white
circles in Fig. 7.18 outline the 6-member rings in the honeycomb arrays in which all
neighbors are antiferromagnetically ordered. This provides a convenient way of visu-
alizing regions of local order. It appears that there are no correlations between the
positions of the ordered 6-member rings from cooldown to cooldown, and it can be
concluded that the ordered regions are randomly distributed in space.

7.3 Concluding remarks

Two-dimensional isolated π-ring arrays have been realized in various configurations.
In isolated π-ring arrays at sufficiently close distances, the half flux quanta are be-
coming antiferromagnetically arranged owing to magnetic interaction.

The first configuration, for which the generation and coupling of half-integer flux
quanta were investigated, was the triangular array. This geometry is of particular
interest, as with the preferential antiferromagnetic coupling between the half-integer
flux quanta, it provides a model example of a strongly frustrated system, character-
ized by a highly degenerate ground state. Coupling of the half flux-quanta was also
investigated and compared between frustrated and unfrustrated geometries. Inves-
tigations of spin interactions on the unfrustrated geometries are a natural way, in
which the Néel long range ordering of a spin system can be investigated. It was found
that the honeycomb and kagomé lattices have stronger AFM correlations than the
triangular lattice, and that the effect of lattice geometry is significant in the trian-
gular lattice. No complete Néel long range ordering has been observed yet in the
unfrustrated lattices due to the dynamic disorder. Further detailed studies are still
needed.
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Summary

Using thin-film ramp-type Josephson contacts between a high-Tc and a low-Tc super-
conductor, experiments to study the dx2−y2 -wave-induced π-phase-shift effects in pla-
nar Josephson arrays have been enabled. The presented studies include the first exper-
imental realization of various complex Josephson arrays with built-in π-phase shifts,
investigations on the order parameter symmetry in various high-Tc cuprate supercon-
ductors, the first direct imaging of dx2−y2 -wave induced Josephson current counter
flow, and half-integer magnetic-flux quantum effects in one- and two-dimensional ar-
rays.

It is widely accepted that the high-Tc cuprate YBa2Cu3O7−δ has a dx2−y2 -wave
order parameter symmetry. For this reason, the first Josephson arrays for which the
dx2−y2-wave-induced π-phase-shift effects were investigated, were between the high-Tc

cuprate YBa2Cu3O7−δ and the low-Tc Nb superconductor. The investigations were
first performed on Josephson arrays with a zigzag configuration. In this structure, the
dx2−y2-wave order parameter of the YBa2Cu3O7−δ induces a difference of π in the
Josephson phase-shift φ across the YBa2Cu3O7−δ-Nb barrier for neighboring facets.

One of the particularly interesting aspects of the zigzag junctions is presented by
the dependencies of the critical current on magnetic fields. For facet lengths a in the
small limit, i.e., a ¿ λJ , with λJ the Josephson penetration depth, the magnetic
field dependence of the critical current of this type of junction presents an anomalous
pattern. No zero-field maximum nor any obvious declining envelope around zero-field
in the magnetic field dependence of the critical current occurs. In stark contrast
to a standard Fraunhofer-like magnetic field dependence of the critical current for
conventional Josephson junctions, sharp maximum-critical-current enhancements are
clearly observed at Ha 6= 0, which can only be achieved from interference effects in
junctions containing regions with ’negative’ critical current densities (π-facets). Using
low temperature scanning electron microscopy imaging experiments performed at the
Universität Tübingen in the group of Prof. D. Koelle, these ’negative’ critical currents
were clearly observed. All of these experimental results provide additional evidence
for a predominant dx2−y2 -wave order parameter symmetry in the YBa2Cu3O7−δ. Ad-
ditionally, the highly symmetric magnetic field dependencies of the critical currents
of these zigzag junctions indicate that there is only a small, if any, subdominant
imaginary s-wave admixture to the dx2−y2 -wave order parameter symmetry.

Apart from demonstrating the experimental realization of high-quality complex
Josephson-arrays comprising the high-Tc cuprate YBa2Cu3O7−δ, the zigzag Joseph-
son junctions were shown to be viable structures to resolve controversial issues re-
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garding the pairing symmetry in the high-Tc cuprate superconductors. This was
demonstrated by the order parameter symmetry test experiments performed based
on Nd2−xCexCuO4−y/Au/Nb zigzag junctions.

The anomalous magnetic field dependencies of the critical currents for
Nd2−xCexCuO4−y/Au/Nb zigzag junctions, which presented similar patterns to
YBa2Cu3O7−δ/Au/Nb zigzag junctions, provide clear evidence for a predominant
dx2−y2 pairing symmetry in the Nd2−xCexCuO4−y. This corroborates the conclu-
sions of studies performed with grain boundary junctions in the optimally doped
compounds.

To verify various recent reports on possible order parameter changes with over-
doping and with decreasing temperature in various electron-doped high-Tc cuprates,
the influence of those parameters has also been investigated for the electron-doped
Nd2−xCexCuO4−y compound. The results indicated that no change in the symme-
try was observed when over-doping the Nd2−xCexCuO4−y compound. Further, the
order parameter symmetry was found to remain unaltered between T = 1.6 K and
T = 4.2 K. Because of the larger Jc’s as compared to grain boundary junctions, the
cuprate-Nb zigzag configuration presents a good instrument for further detailed order-
parameter symmetry test experiments. It will be interesting to extend the studies to
other electron-doped compounds such as Pr2−xCexCuO4−y and La2−xCexCuO4−y.

Another interesting aspect of the zigzag junctions is that for facet lengths a in the
wide limit, i.e., a À λJ , the lowest-energy ground state of the system is characterized
by a spontaneous generation of a half-integer magnetic-flux quantum at each corner.
The spontaneously-generated half-integer magnetic-flux quanta in zigzag junctions
were imaged using a scanning SQUID microscope at the IBM T.J. Watson Research
Center by Dr. John Kirtley. The obtained images showed clearly a spontaneously
induced magnetic flux at every corner of the zigzag junctions. Within the accuracy
of the experiment, the magnitude of the flux was calibrated to be 1

2Φ0 at each corner.
The spontaneous fluxes were very well antiferromagnetically ordered. This antiferro-
magnetic ordering was found to be very robust, occurring for many cool-downs and
for different samples with comparable geometries.

Simply put, because of the relationship between the enclosed flux and the
quantum-phase in a superconductor ring, the half-integer magnetic-flux quanta pro-
vide a further π-phase change between neighboring facets, either adding or subtracting
to the dx2−y2-wave-induced π-phase-shifts, depending on the half magnetic-flux quan-
tum polarity. In both cases this leads to a lowering of the Josephson coupling energy.
The antiferromagnetic ordering sets in and freezes in during the cooling down process
when λJ ∼ a. At this period, the perfect antiferromagnetic ordering is expected to
cost the lowest energy for the system.

In the above-mentioned experiments, the ordering of the half-integer magnetic
flux-quanta occurs in a singly connected superconducting system. To study the mag-
netic coupling between the half magnetic-flux quanta, electrically isolated Josephson
structures have been realized. Similar to connected structures, a preferentially an-
tiferromagnetic ordering of half-integer magnetic-flux quanta was also observed for
electrically isolated structures, when sufficiently closely spaced. This presents an
analogue to the antiferromagnetic Ising-spin system, and opens a possibility to real-
ize various two-dimensional Ising antiferromagnetic systems.
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The first two-dimensional Ising system was realized in a triangular configuration.
This geometry is of particular interest, as with preferential antiferromagnetic cou-
pling between the half-integer magnetic-flux quanta, it provides a model example of a
strongly frustrated system, characterized by a high-entropy, highly degenerate ground
state. Until now, such systems have been studied, e.g., with arrays of all low-Tc su-
perconducting rings biased at an externally applied magnetic flux of 1

2Φ0 per ring
and with low-Tc Josephson junction arrays. Fluctuations in the dimensions of those
rings, resulting in variations in the flux bias and a lifting of the degeneracy, have
been found to be a major complication in these investigations. The dx2−y2 -wave-
induced spontaneously-generated flux provides an advantage in this respect, as the
two flux-states are intrinsically degenerate. This was demonstrated by the fact that,
although the systems with spontaneously generated half-flux quanta were realized
from elements which were placed much further apart, they have higher antiferromag-
netic bond-order parameters than the systems with conventional rings. The observed
disorder in the triangular array may partly be due to the geometric frustration effect,
and partly to the dynamical disorder effects.

The natural way to investigate the existence of Néel long range order in two
dimensional Ising systems is to put the spins onto lattices of an unfrustrated geometry.
For this reason, coupling of the half magnetic-flux quanta was also investigated on
unfrustrated geometries, such as the square and honeycomb lattice. Although no Néel
long range ordering was observed for a larger area in the square and honeycomb lattice,
there are nice antiferromagnetic orderings on some separated areas. A complete Néel
long range order might have been hampered by the dynamic disorder.

The possibility of manipulating the polarities of individual half magnetic-flux
quanta has also been demonstrated. The manipulation was done by locally applying
a magnetic field, enabling the possibilities of storing information or of constructing
desired patterns of half magnetic-flux quanta.

Finally, the work described in this thesis will provide a diverse basis for both fun-
damental studies and potential applications, including further investigations on de-
tails of the order parameter symmetry in the high-Tc cuprates, half-integer magnetic-
flux quantum effects, correlation in two-dimensional Ising models, and to realize the
theoretically proposed elements for superconducting (quantum) electronics such as
complementary Josephson circuits and qubits.





Samenvatting

Gebruikmakend van dunne-laag 8ramp-type′ Josephson contacten tussen een hoge-
Tc en een lage-Tc supergeleider zijn experimenten mogelijk gemaakt om dx2−y2 -
gëınduceerde π-faseverschuivingseffecten in planaire Josephson arrays te bestuderen.
De gepresenteerde studies omvatten de eerste experimentele realisatie van verschei-
dene complexe Josephson arrays met ingebouwde π-faseverschuivingen, onderzoek
van de ordeparametersymmetrie in verscheidene hoge-Tc koperoxide supergeleiders,
de eerste directe afbeelding van dx2−y2 -gëınduceerde Josephson tegenstroom, en mag-
netische halve flux quantum effecten in één- en twee-dimensionale arrays.

Het wordt algemeen aangenomen dat de hoge-Tc koperoxide supergeleider
YBa2Cu3O7−δ een dx2−y2 ordeparametersymmetrie heeft. Om die reden waren de
eerste Josephson arrays waarvoor de dx2−y2 -gëınduceerde π-faseverschuivingseffecten
werden bestudeerd tussen de hoge-Tc koperoxide supergeleider YBa2Cu3O7−δ en de
lage-Tc supergeleider Nb. Het onderzoek is eerst uitgevoerd voor Josephson arrays
met een zigzag configuratie. In deze structuur induceert de dx2−y2 orde-parameter van
het YBa2Cu3O7−δ een verschil π in de Josephson faseval φ over de YBa2Cu3O7−δ-Nb
barrière voor aangrenzende facetten.

Eén van de aspecten van de zigzag juncties die in het bijzonder interessant is
wordt gevormd door de magneetveld-afhankelijkheid van de kritische stroom. Voor
facetlengtes a in de kleine limiet, d.w.z., a ¿ λJ , met λJ de Josephson pene-
tratiediepte, toont de magneetveld-afhankelijkheid van de kritische stroom voor dit
type juncties een afwijkend patroon. Er bevindt zich bij nul magneetveld geen max-
imum noch een afnemende enveloppe van de kritische stroom. In sterk contrast
met de standaard Fraunhofer-achtige magneetveld-afhankelijkheid van de kritische
stroom voor conventionele Josephson juncties worden scherpe kritische stroom max-
ima waargenomen bij Ha 6= 0, hetgeen alleen bereikt kan worden door interferentie-
effecten in juncties die ’negatieve’ kritische stroomdichtheden bevatten (π-facetten).
Gebruikmakend van lage temperatuur scanning electron microscopy uitgevoerd aan de
Universität Tübingen zijn deze ’negatieve’ kritische stromen duidelijk waargenomen.
Al deze experimentele resultaten bieden aanvullend bewijs voor een overheersende
dx2−y2 ordeparametersymmetrie in het YBa2Cu3O7−δ. Tevens geven de zeer sym-
metrische magneetveld-afhankelijkheden van de kritische stromen van deze zigzag
juncties een indicatie dat als er al een imaginaire s component is naast de dx2−y2

ordeparametersymmetrie, deze slechts klein en ondergeschikt is.
Behalve het demonstreren van de experimentele realisatie van complexe Joseph-

son arrays van hoge kwaliteit met de hoge-Tc supergeleider YBa2Cu3O7−δ, zijn de
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zigzag Josephson juncties geschikte structuren gebleken om controversiële onderwer-
pen met betrekking tot de paringssymmetrie in de hoge-Tc koperoxide supergeleiders
op te lossen. Dit is gedemonstreerd door de uitgevoerde ordeparametersymmetrie test
experimenten gebaseerd op Nd2−xCexCuO4−y/Au/Nb zigzag juncties.

De afwijkende magneetveld-afhankelijkheden van de kritische stromen voor
Nd2−xCexCuO4−y/Au/Nb zigzag juncties, die met de YBa2Cu3O7−δ/Au/Nb zigzag
juncties vergelijkbare patronen vertoonden, leveren duidelijk bewijs voor een over-
heersende dx2−y2 paringssymmetrie in het Nd2−xCexCuO4−y. Dit versterkt de con-
clusies van studies die uitgevoerd zijn met korrelgrensjuncties in de optimaal gedo-
teerde samenstellingen.

Om de verscheidene recente meldingen van mogelijke ordeparameter veranderingen
met overdotering en met afnemende temperatuur in verschillende elektron-gedoteerde
hoge-Tc koperoxides te verifiëren is de invloed van deze parameters ook onder-
zocht voor de elektron-gedoteerde samenstelling Nd2−xCexCuO4−y. De resultaten
gaven geen indicatie voor een verandering in de symmetrie wanneer de samenstelling
Nd2−xCexCuO4−y wordt overgedoteerd. Verder werd gevonden dat de ordeparame-
tersymmetrie onveranderd blijft tussen T = 1.6 K en T = 4.2 K. Vanwege de grotere
Jc’s in vergelijking met korrelgrensjuncties leent de koperoxide-Nb zigzag configuratie
zich als een goed instrument voor verdere gedetailleerde ordeparametersymmetrie test
experimenten. Het zal interessant zijn om de studies uit te breiden naar andere
elektron-gedoteerde samenstellingen zoals Pr2−xCexCuO4−y en La2−xCexCuO4−y.

Een ander interessant aspect van de zigzag juncties is dat voor facetlengtes a in
de grote limiet, d.w.z., a À λJ , de laagste energietoestand van het systeem gekarak-
teriseerd wordt door de spontane opwekking van een magnetisch halve flux quantum
op elke hoek. De spontaan opgewekte magnetische halve flux quanta in zigzag juncties
zijn vastgelegd door gebruik te maken van een scanning SQUID microscoop in het
IBM T.J. Watson onderzoekscentrum door Dr. John Kirtley. De verkregen afbeeldin-
gen toonden duidelijk een spontaan gëınduceerde magnetische flux op elke hoek van
de zigzag juncties. Binnen de nauwkeurigheid van het experiment werd de grootte van
de flux gecalibreerd op 1

2Φ0 voor elke hoek. De spontane fluxen waren erg goed anti-
ferromagnetisch geordend. Deze antiferromagnetische ordening bleek erg robuust te
zijn en trad op voor veel afkoelingen en voor verschillende samples met vergelijkbare
geometrieën.

Simpel gezegd leveren de magnetische halve flux quanta een verdere π-
faseverschuiving tussen aangrenzende facetten vanwege de relatie tussen de ingevangen
flux en de quantum-fase in een supergeleidende ring die opgeteld dan wel afgetrokken
moet wonder van de dx2−y2 -gëınduceerde π-faseverschuivingen, afhankelijk van de
polariteit van het halve magnetische flux quantum. In beide gevallen leidt dit tot
een verlaging van de Josephson koppelings-energie. De antiferromagnetische ordening
begint en bevriest tijdens het afkoelproces als λJ ∼ a. Tijdens deze periode wordt
verwacht dat de antiferromagnetische ordening de laagste energietoestand van het
systeem vormt.

In bovengenoemde experimenten vindt de ordening van de magnetische halve flux-
quanta plaats in een enkelvoudig verbonden supergeleidend systeem. Om de magnetis-
che koppeling tussen de halve magnetische flux quanta te bestuderen zijn elektrisch
gëısoleerde Josephson structuren gerealiseerd. Net als bij de verbonden structuren



Samenvatting 135

werd ook bij de elektrisch gëısoleerde structuren een voorkeur voor antiferromag-
netische koppeling van magnetische halve flux quanta geöbserveerd, als deze dicht
genoeg bij elkaar lagen. Dit biedt een analagon voor het antiferromagnetische Ising-
spin systeem, en opent een mogelijkheid om verscheidene twee dimensionale Ising
antiferromagnetische systemen te realiseren.

Het eerste twee-dimensionale Ising systeem werd gerealiseerd in een driehoekige
configuratie. Deze geometrie is in het bijzonder interessant, want met een voorkeur
voor antiferromagnetische koppeling tussen de magnetische halve flux quanta biedt
dit een modelvoorbeeld van een sterk gefrustreerd systeem, gekarakteriseerd door een
hoog-entropische, hoog ontaarde grondtoestand. Eerder werden dergelijke systemen
bijvoorbeeld bestudeerd met arrays van lage-Tc supergeleidende ringen gebiased op
een externe magnetische flux van 1

2Φ0 per ring en met lage-Tc Josepshon junctie ar-
rays. Fluctuaties in de dimensies van die ringen, resulterend in variatie in de flux
bias en een opheffen van de ontaarding, zijn een groot probleem gebleken in deze
studies. De dx2−y2 -gëınduceerde spontaan gegenereerde flux biedt een voordeel in
dit opzicht, want de twee flux-toestanden zijn intrinsiek ontaard. Dit is gedemon-
streerd door het feit dat hoewel de systemen met spontaan gegenereerde halve flux
quanta gerealiseerd waren door elementen die veel verder uit elkaar geplaatst waren,
ze hogere antiferromagnetische bond-ordeparameters hebben dan de systemen met
conventionele ringen. De waargenomen wanorde in het driehoekige array is misschien
deels door het geometrische frustratie effect, en deels het gevolg van de dynamische
wanorde effecten.

De natuurlijke manier om het bestaan van Néel lange afstand ordering in twee-
dimensionale Ising systemen te onderzoeken is de spins in roosters van een onge-
frustreerde geometrie te plaatsen. Om deze reden werd de koppeling van de halve
magnetische flux quanta ook onderzocht voor ongefrustreerde geometrieën, zoals het
vierkante en het honingraat rooster. Hoewel op een groter oppervlak in het vierkante
en honingraat rooster Néel lange afstand ordening werd waargenomen zijn er mooie
antiferromagnetische ordeningen waargenomen in enkele kleine gebieden. Een com-
plete Néel lange afstand orde is misschien belemmerd door de dynamische wanorde.

De mogelijkheid om de polariteiten van individuele halve magnetische flux quanta
te manipuleren is ook aangetoond. De manipulatie werd uitgevoerd door lokaal een
magnetisch veld aan te brengen, waardoor de mogelijkheid werd gecreëerd om infor-
matie op te slaan of gewenste patronen van halve magnetische flux quanta te con-
strueren.

Tenslotte, zal het werk beschreven in dit proefschrift legt een diverse basis voor
zowel fundamentele studies als potentiële toepassingen, waaronder verdere onder-
zoeken naar de details van de orde parameter symmetrie in de hoge-Tc koperoxides,
magnetische halve flux quantum effecten, correlaties in twee dimensionale Ising mod-
ellen, en om de theoretisch voorgestelde elementen voor supergeleidende (quantum)
electronica zoals complementaire Josephson cicuits en qubits te realiseren.
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